199
Views
1
CrossRef citations to date
0
Altmetric
Articles

Enhanced ethanol gas sensing properties of hierarchical porous SnO2-ZnO microspheres at low working temperature

, , &
Pages 1853-1863 | Received 25 Oct 2021, Accepted 24 Feb 2022, Published online: 31 Mar 2022

References

  • Ikram, M.; Liu, Y.; Lv, H.; Liu, L.; Rehman, A. U.; Kan, K.; Zhang, WJun.; He, L.; Wang, Y.; Wang, R.; Shi, K. 3D-Multilayer MoS2 Nanosheets Vertically Grown on Highly Mesoporous Cubic In2O3 for High-Performance Gas Sensing at Room Temperature. Appl. Surf. Sci. 2019, 466, 1–11. DOI: 10.1016/j.apsusc.2018.10.018.
  • Lee, C. S.; Li, H. Y.; Kim, B. Y.; Jo, Y. M.; Byun, H. G.; Hwang, I. S.; Abdel-Hady, F.; Wazzan, A. A.; Lee, J. H. Discriminative Detection of Indoor Volatile Organic Compounds Using a Sensor Array Based on Pure and Fe-Doped In2O3 Nanofibers. Sens. Actuator B 2019, 285, 193–200. DOI: 10.1016/j.snb.2019.01.044.
  • Kim, M. H.; Jang, J. S.; Koo, W. T.; Choi, S. J.; Kim, S. J.; Kim, D. H.; Kim, I. D. Bimodally Porous WO3 Microbelts Functionalized with Pt Catalysts for Selective H2S Sensors. ACS Appl. Mater. Interfaces 2018, 10, 20643–20651. DOI: 10.1021/acsami.8b00588.
  • Zhang, J. N.; Lu, H. B.; Yan, C.; Yang, Z. B.; Zhu, G. Q.; Gao, J. Z.; Yin, F.; Wang, C. L. Fabrication of Conductive Graphene Oxide-WO3 Composite Nanofibers by Electrospinning and Their Enhanced Acetone Gas Sensing Properties. Sens. Actuator B 2018, 264, 128–138. DOI: 10.1016/j.snb.2018.02.026.
  • Kortidis, I.; Swart, H. C.; Ray, S. S.; Motaung, D. E. Characteristics of Point Defects on the Room Temperature Ferromagnetic and Highly NO2 Selectivity Gas Sensing of P-Type Mn3O4 Nanorods. Sens. Actuator B 2019, 285, 92–107. DOI: 10.1016/j.snb.2019.01.007.
  • Maccato, C.; Bigiani, L.; Carraro, G.; Gasparotto, A.; Sada, C.; Comini, E.; Barreca, D. Toward the Detection of Poisonous Chemicals and Warfare Agents by Functional Mn3O4 Nanosystems. ACS Appl. Mater. Interfaces 2018, 10, 12305–12310. DOI: 10.1021/acsami.8b01835.
  • Cho, I.; Kang, K.; Yang, D.; Yun, J.; Park, I. Localized Liquid-Phase Synthesis of Porous SnO2 Nanotubes on MEMS Platform for Low-Power, High Performance Gas Sensors. ACS Appl. Mater. Interfaces 2017, 9, 27111–27119. DOI: 10.1021/acsami.7b04850.
  • Kim, H. W.; Na, H. G.; Kwon, Y. J.; Kang, S. Y.; Choi, M. S.; Bang, J. H.; Wu, P.; Kim, S. S. Microwave-Assisted Synthesis of Graphene-SnO2 Nanocomposites and Their Applications in Gas Sensors. ACS Appl. Mater. Interfaces 2017, 9, 31667–31682. DOI: 10.1021/acsami.7b02533.
  • Kim, T. H.; Kwak, C. H.; Lee, J. H. NiO/NiWO4 Composite Yolk-Shell Spheres with Nanoscale NiO Outer Layer for Ultrasensitive and Selective Detection of Sub ppm-Level P-Xylene. ACS Appl. Mater. Interfaces 2017, 9, 32034–32043. DOI: 10.1021/acsami.7b10294.
  • Yi, S. Y.; Song, Y. G.; Park, J. Y.; Suh, J. M.; Kim, G. S.; Shim, Y. S.; Yuk, J. M.; Kim, S.; Jang, H. W.; Ju, B. K.; Kang, C. Y. Morphological Evolution Induced through a Heterojunction of W-Decorated NiO Nanoigloos: Synergistic Effect on High-Performance Gas Sensors. ACS Appl. Mater. Interfaces 2019, 11, 7529–7538. DOI: 10.1021/acsami.8b18678.
  • Oosthuizen, D. N.; Motaung, D. E.; Swart, H. C. In Depth Study on the Notable Room-Temperature NO2 Gas Sensor Based on CuO Nanoplatelets Prepared by Sonochemical Method: Comparison of Various Bases. Sens. Actuator B 2018, 66, 761–772.
  • Xu, Z. K.; Luo, Y. Y.; Duan, G. T. Self-Assembly of Cu2O Monolayer Colloidal Particle Film Allows the Fabrication of CuO Sensor with Superselectivity for Hydrogen Sulfide. ACS Appl. Mater. Interfaces 2019, 11, 8164–8174. DOI: 10.1021/acsami.8b17251.
  • Ponmudi, S.; Sivakumar, R.; Sanjeeviraja, C.; Gopalakrishnan, C.; Jeyadheepan, K. Tuning the Morphology of Cr2O3:CuO (50:50) Thin Films by RF Magnetron Sputtering for Room Temperature Sensing Application. Appl. Surf. Sci. 2019, 466, 703–714. DOI: 10.1016/j.apsusc.2018.10.096.
  • Sumangala, T. P.; Pasquet, I.; Presmanes, L.; Thimont, Y.; Bonningue, C.; Venkataramani, N.; Prasad, S.; Baco-Carles, V.; Tailhades, P.; Barnabé, A. Effect of Synthesis Method and Morphology on the Enhanced CO2 Sensing Properties of Magnesium Ferrite MgFe2O4. Ceram. Int. 2018, 44, 18578–18584.
  • Xun, H. T.; Zhang, Z. B.; Yu, A. H.; Yi, J. X. Remarkably Enhanced Hydrogen Sensing of Highly-Ordered SnO2-Decorated TiO2 Nanotubes. Sens. Actuators B 2018, 273, 983–990. DOI: 10.1016/j.snb.2018.06.120.
  • Zhu, Y. H.; Xu, Z. W.; Yan, K.; Zhao, H. B.; Zhang, J. D. One-Step Synthesis of CuO-Cu2O Heterojunction by Flame Spray Pyrolysis for Cathodic Photoelectrochemical Sensing of l-Cysteine. ACS Appl. Mater. Interfaces 2017, 9, 40452–40460. DOI: 10.1021/acsami.7b13020.
  • Kumar, A.; Kumar, A.; Chandra, R. Fabrication of Porous Silicon Filled Pd/SiC Nanocauliflower Thin Films for High Performance H2 Gas Sensor. Sens. Actuator B 2018, 264, 10–19. DOI: 10.1016/j.snb.2018.02.164.
  • Liu, C.; Gao, H. Y.; Wang, L. W.; Wang, T. S.; Yang, X. L.; Sun, P.; Gao, Y.; Liang, X. S.; Liu, F. M.; Song, H. W.; Lu, G. Y. Facile Synthesis and the Enhanced Sensing Properties of Pt-Loaded α-Fe2O3 Porous Nanospheres. Sens. Actuator B 2017, 252, 1153–1162. DOI: 10.1016/j.snb.2017.06.012.
  • Li, Y. W.; Luo, N.; Sun, G.; Zhang, B.; Jin, H. H.; Lin, L.; Bala, H.; Cao, J. L.; Zhang, Z. Y.; Wang, Y. Synthesis of Porous Nanosheets-Assembled ZnO/ZnCo2O4 Hierarchical Structure for TEA Detection. Sens. Actuator B 2019, 287, 199–208. DOI: 10.1016/j.snb.2019.02.055.
  • Zhang, D. Z.; Fan, X.; Yang, A. J.; Zong, X. Q. Hierarchical Assembly of Urchin-Like Alpha-Iron Oxide Hollow Microspheres and Molybdenum Disulphide Nanosheets for Ethanol Gas Sensing. J. Colloid Interface Sci. 2018, 523, 217–225. DOI: 10.1016/j.jcis.2018.03.109.
  • Han, M. A.; Kim, H. J.; Lee, H. C.; Park, J. S.; Lee, H. N. Effects of Porosity and Particle Size on the Gas Sensing Properties of SnO2 Films. Appl. Surf. Sci. 2019, 481, 133–137. DOI: 10.1016/j.apsusc.2019.03.043.
  • Hua, Z.; Qiu, Z.; Li, Y.; Zeng, Y.; Wu, Y.; Tian, X.; Wang, M.; Li, E. A Theoretical Investigation of the Power-Law Response of Metal Oxide Semiconductor Gas Sensors ΙI: Size and Shape Effects. Sens. Actuator B 2018, 255, 3541–3549. DOI: 10.1016/j.snb.2017.09.189.
  • Tabr, F. A.; Salehiravesh, F.; Adelnia, H.; Gavgani, J. N.; Mahyari, M. High Sensitivity Ammonia Detection Using Metal Nanoparticles Decorated on Graphene Macroporous Frameworks/Polyaniline Hybrid. Talanta 2019, 197, 457–464. DOI: 10.1016/j.talanta.2019.01.060.
  • Li, Z. Y.; Yang, Q. B.; Wu, Y. P.; He, Y.; Chen, J. Y.; Wang, J. F. La3+ Doped SnO2 Nanofibers for Rapid and Selective H2 Sensor with Long Range Linearity. Int. J. Hydrogen. Energy 2019, 44, 8659–8668. DOI: 10.1016/j.ijhydene.2019.02.050.
  • Li, H.; Chu, S. S.; Ma, Q.; Wang, J. P.; Che, Q. D.; Wang, G.; Yang, P. Hierarchical WO3/ZnWO4 1D Fibrous Heterostructures with Tunable in-Situ Growth of WO3 Nanoparticles on Surface for Efficient Low Concentration HCHO Detection. Sens. Actuator B 2019, 286, 564–574. DOI: 10.1016/j.snb.2019.02.028.
  • Yan, Y.; Liu, J. Y.; Zhang, H. S.; Song, D. L.; Li, J. Q.; Yang, P. P.; Zhang, M. L.; Wang, J. One-Pot Synthesis of Cubic ZnSnO3/ZnO Heterostructure Composite and Enhanced Gas-Sensing Performance. J. Alloy. Compd. 2019, 780, 193–201. DOI: 10.1016/j.jallcom.2018.11.310.
  • Qu, F. D.; Zhou, X. X.; Zhang, B. X.; Zhang, S. D.; Jiang, C. J.; Ruan, S. P.; Yang, M. H. Fe2O3 Nanoparticles-Decorated MoO3 Nanobelts for Enhanced Chemiresistive Gas Sensing. J. Alloy. Compd. 2019, 782, 672–678. DOI: 10.1016/j.jallcom.2018.12.258.
  • Wang, Q. J.; Kou, X. Y.; Liu, C.; Zhao, L. J.; Lin, T. T.; Liu, F. M.; Yang, X. L.; Lin, J.; Lu, G. Y. Hydrothermal Synthesis of Hierarchical CoO/SnO2 Nanostructures for Ethanol Gas Sensor. J. Colloid. Interf. Sci. 2018, 513, 760–766. DOI: 10.1016/j.jcis.2017.11.073.
  • Gao, H. Y.; Wei, D. D.; Lin, P. F.; Liu, C.; Sun, P.; Shimanoe, K.; Yamazoe, N.; Lu, G. Y. The Design of Excellent Xylene Gas Sensor Using Sn-Doped NiO Hierarchical Nanostructure. Sens. Actuator B 2017, 253, 1152–1162. DOI: 10.1016/j.snb.2017.06.177.
  • Li, L.; Zhang, C. M.; Chen, W. Fabrication of SnO2-SnO Nanocomposites with P-N Heterojunctions for the Low-Temperature Sensing of NO2 Gas. Nanoscale 2015, 7, 12133–12142. DOI: 10.1039/C5NR02334C.
  • Liu, W.; Xu, L.; Sheng, K.; Chen, C.; Zhou, X. Y.; Dong, B.; Bai, X.; Zhang, S.; Lu, G. Y.; Song, H. W. APTES-Functionalized Thin-Walled Porous WO3 Nanotubes for Highly Selective Sensing of NO2 in A Polluted Environment. J. Mater. Chem. A 2018, 6, 10976–10989.
  • Wang, Y. S.; Wang, S. R.; Zhang, H. X.; Gao, X. L.; Yang, J. D.; Wang, L. W. Brookite TiO2 Decorated α-Fe2O3 Nanoheterostructures with Rod Morphologies for Gas Sensor Application. J. Mater. Chem. A 2014, 2, 7935. DOI: 10.1039/c4ta00163j.
  • Zhang, S. S.; Li, Y. W.; Sun, G.; Zhang, B.; Wang, Y.; Cao, J. L.; Zhang, Z. Y. Enhanced Methane Sensing Properties of Porous NiO Nanaosheets by Decorating with SnO2. Sens. Actuator B 2019, 288, 373–382. DOI: 10.1016/j.snb.2019.03.024.
  • Zhang, H.; Hu, J.; Li, M.; Li, Z.; Yuan, Y.; Yang, X.; Guo, L. Highly Efficient Toluene Gas Sensor Based on Spine Structured Hollow Urchin-Like Core Shell ZnFe2O4 Spheres. Sens. Actuator B 2021, 349, 130734. DOI: 10.1016/j.snb.2021.130734.
  • Chen, T. D.; Yan, W. H.; Wang, Y.; Li, J. L.; Hu, H. B.; Ho, D. SnS2/MXene Derived TiO2 Hybrid for Ultra-Fast Room Temperature NO2 Gas Sensing. J. Mater. Chem. C 2021, 9, 7407–7416. DOI: 10.1039/D1TC00197C.
  • Li, W.; Ma, S.; Li, Y.; Yang, G.; Mao, Y.; Luo, J.; Gengzang, D.; Xu, X.; Yan, S. Enhanced Ethanol Sensing Performance of Hollow ZnO-SnO2 Core-Shell Nanofibers. Sens. Actuator B 2015, 211, 392–402. DOI: 10.1016/j.snb.2015.01.090.
  • Liang, Y. Preparation and Electrochemical Performance of Highly Dispersed Sn-Zn-O Composite System. Mater. Chem. Phys. 2009, 115, 735–739. DOI: 10.1016/j.matchemphys.2009.02.019.
  • Kuzhalosai, V.; Subash, B.; Senthilraja, A.; Dhatshanamurthi, P.; Shanthi, M. Synthesis, Characterization and Photocatalytic Properties of SnO2-ZnO Composite under UV-a Light. Spectrochim. Acta. A 2013, 115, 876–882. DOI: 10.1016/j.saa.2013.06.106.
  • Xu, M. Z.; Jia, S. L.; Chen, C.; Zhang, Z. Y.; Yan, J. F.; Guo, Y. X.; Zhang, Y. N.; Zhao, W.; Yun, J. N.; Wang, Y. N. Microwave-Assistant Hydrothermal Synthesis SnO2@ZnO Hierarchical Nanostructures Enhanced Photocatalytic Performance under Visible Light Irradiation. Mater. Res. Bull. 2018, 106, 74–80. DOI: 10.1016/j.materresbull.2018.05.033.
  • Ahmadnia-Feyzabad, S.; Mortazavi, Y.; Khodadadi, A. A.; Hemmati, S. Sm2O3 Doped-SnO2 Nanoparticles, Very Selective and Sensitive to Volatile Organic Compounds. Sens. Actuator B 2013, 181, 910–918. DOI: 10.1016/j.snb.2013.02.101.
  • Singh, G.; Virpal.; Singh, R. C. Highly Sensitive Gas Sensor Based on Er-Doped SnO2 Nanostructures and Its Temperature Dependent Selectivity towards Hydrogen and Ethanol. Sens. Actuator B 2019, 282, 373–383. DOI: 10.1016/j.snb.2018.11.086.
  • Wang, Z. Y.; Jia, Z. G.; Li, Q. L.; Zhang, X. Y.; Sun, W.; Sun, J. B.; Liu, B. H.; Ha, B. Y. The Enhanced NO2 Sensing Properties of SnO2 Nanoparticles/Reduced Graphene Oxide Composite. J. Colloid Interface Sci. 2019, 537, 228–237. DOI: 10.1016/j.jcis.2018.11.009.
  • Yang, H. R.; Bai, X. J.; Hao, P.; Tian, J.; Bo, Y. Y.; Wang, X. Z.; Liu, H. A Simple Gas Sensor Based on Zinc Ferrite Hollow Spheres: Highly Sensitivity, Excellent Selectivity and Long-Term Stability. Sens. Actuator B 2019, 280, 34–40. DOI: 10.1016/j.snb.2018.10.056.
  • Majhi, S. M.; Naik, G. K.; Lee, H. J.; Song, H. G.; Lee, C. R.; Lee, I. H.; Yu, Y. T. Au@NiO Core-Shell Nanoparticles as a P-Type Gas Sensor: Novel Synthesis, Characterization, and Their Gas Sensing Properties with Sensing Mechanism. Sens. Actuator B 2018, 268, 223–231. DOI: 10.1016/j.snb.2018.04.119.
  • Yin, Z. J.; Sun, Z. P.; Wu, J. W.; Liu, R. T.; Zhang, S. Y.; Qian, Y. N.; Min, Y. G. Facile Synthesis of Hexagonal Single-Crystalline ZnCo2O4 Nanosheet Arrays Assembled by Mesoporous Nanosheets as Electrodes for High-Performance Electrochemical Capacitors and Gas Sensors. Appl. Surf. Sci. 2018, 457, 1103–1109. DOI: 10.1016/j.apsusc.2018.06.297.
  • Jayababu, N.; Poloju, M.; Shruthi, J.; Reddy, M. V. R. NiO Decorated CeO2 Nanostructures as Room Temperature Isopropanol Gas Sensors. RSC Adv. 2019, 9, 13765–13755. DOI: 10.1039/C9RA00441F.
  • Qin, W. B.; Yuan, Z. Y.; Gao, H. L.; Zhang, R. Z.; Meng, F. L. Perovskite-Structured LaCoO3 Modified ZnO Gas Sensor and Investigation on Its Gas Sensing Mechanism by First Principle. Sens. Actuator B 2021, 341, 130015. DOI: 10.1016/j.snb.2021.130015.
  • Ji, H. Y.; Qin, W. B.; Yuan, Z. Y.; Meng, F. L. Qualitative and Quantitative Recognition Method of Drug-Producing Chemicals Based on SnO2 Gas Sensor with Dynamic Measurement and PCA Weak Separation. Sens. Actuator B 2021, 348, 130698. DOI: 10.1016/j.snb.2021.130698.
  • Meng, F. L.; Shi, X.; Yuan, Z. Y.; Ji, H. Y.; Qin, W. B.; Shen, Y. B.; Xing, C. Y. Detection of Four Alcohol Homologue Gases by ZnO Gas Sensor in Dynamic Interval Temperature Modulation Mode. Sens. Actuator B 2022, 350, 130867. DOI: 10.1016/j.snb.2021.130867.
  • Li, L.; Liu, M. M.; He, S. J.; Chen, W. Freestanding 3D Mesoporous Co3O4@Carbon Foam Nanostructures for Ethanol Gas Sensing. Anal. Chem. 2014, 86, 7996–7800. DOI: 10.1021/ac5021613.
  • Choi, S.; Bonyani, M.; Sun, G. J.; Lee, J. K.; Hyun, S. K.; Lee, C. Cr2O3 Nanoparticles-Functionalized WO3 Nanorods for Ethanol Gas Sensors. Appl. Surf. Sci. 2018, 432, 241–249. DOI: 10.1016/j.apsusc.2017.01.245.
  • Wang, Z. Y.; Sackmann, A.; Gao, S.; Weimar, U.; Lu, G. Y.; Liu, S.; Zhang, T.; Barsan, N. Study on Highly Selective Sensing Behavior of Ppb-Level Oxidizing Gas Sensors Based on Zn2SnO4 Nanoparticles Immobilized on Reduced Graphene Oxide under Humidity Conditions. Sens. Actuator B 2019, 285, 590–600. DOI: 10.1016/j.snb.2019.01.109.
  • Yan, S.; Xue, J. Z.; Wu, Q. S. Synchronous Synthesis and Sensing Performance of α-Fe2O3/SnO2 Nanofiber Heterostructures for Conductometric C2H5OH Detection. Sens. Actuator B 2018, 275, 322–331. DOI: 10.1016/j.snb.2018.07.079.
  • Su, C.; Zhang, L.; Han, Y. T.; Ren, C.; Chen, X. W.; Hu, J.; Zeng, M.; Hu, N. T.; Su, Y. J.; Zhou, Z. H.; Yang, Z. Controllable Synthesis of Crescent-Shaped Porous NiO Nanoplates for Conductometric Ethanol Gas Sensors. Sens. Actuator B 2019, 296, 126642. DOI: 10.1016/j.snb.2019.126642.
  • Yang, B. X.; Myung, N. V.; Tran, T. T. 1D Metal Oxide Semiconductor Materials for Chemiresistive Gas Sensors: A Review. Adv. Electron. Mater. 2021, 7, 2100271. DOI: 10.1002/aelm.202100271.
  • Guo, J. H.; Li, W. W.; Zhao, X. L.; Hu, H. W.; Wang, M.; Luo, Y.; Xie, D.; Zhang, Y. J.; Zhu, H. W. Highly Sensitive, Selective, Flexible and Scalable Room – Temperature NO2 Gas Sensor Based on Hollow SnO2/ZnO Nanofibers. Molecules 2021, 26, 6475. DOI: 10.3390/molecules26216475.
  • Chowdhury, N. K.; Bhowmik, B. Micro/Nanostructured Gas Sensor: The Physics behind the Nanostructure Growth, Sensing and Selectivity Mechanisms. Nanoscale Adv. 2021, 3, 73–93. DOI: 10.1039/D0NA00552E.
  • ulHaq, M.; Zhang, X. Y.; Chen, X. H.; Rahman, N.; Khan, S.; Khatoon, R.; Hassan, S. S.; Ye, Z. Z.; Zhu, L. P. A Two-Step Synthesis of Microsphere-Decorated Fibers Based on NiO/ZnSnO3 Composites towards Superior Ethanol Sensitivity Performance. J. Alloy. Compd. 2019, 777, 73–83.
  • Li, G.; Zhang, X.; Lu, H.; Yan, C.; Chen, K.; Lu, H.; Gao, J.; Yang, Z.; Zhu, G.; Wang, C.; He, Z. Ethanol Sensing Properties and Reduced Sensor Resistance Using Porous Nb2O5-TiO2 N-N Junction Nanofibers. Sens. Actuator B 2019, 283, 602–612. DOI: 10.1016/j.snb.2018.12.074.
  • Qin, C.; Wang, Y.; Gong, Y. X.; Zhang, X. L.; Cao, J. L. CuO-ZnO Hetero-Junctions Decorated Graphitic Carbon Nitride Hybrid Nanocomposite: Hydrothermal Synthesis and Ethanol Gas Sensing Application. J. Alloy. Compd. 2019, 770, 972–980. DOI: 10.1016/j.jallcom.2018.08.205.
  • Xiao, B. X.; Huang, H.; Yu, X. T.; Song, J.; Qu, J. L. Facile Synthesis of Layered V2O5/ZnV2O6 Heterostructures with Enhanced Sensing Performance. Appl. Surf. Sci. 2018, 447, 569–575. DOI: 10.1016/j.apsusc.2018.04.027.
  • Xuan, J. Y.; Zhao, G. D.; Sun, M. L.; Jia, F. C.; Wang, X. M.; Zhou, T.; Yin, G. C.; Liu, B. Low-Temperature Operating ZnO-Based NO2 Sensors: A Review. RSC Adv. 2020, 10, 39786–39807. DOI: 10.1039/D0RA07328H.
  • Guo, W. W.; Wang, Z. C. Composite of ZnO Spheres and Functionalized SnO2 Nanofibers with an Enhanced Ethanol Gas Sensing Properties. Mater. Lett. 2016, 169, 246–249. DOI: 10.1016/j.matlet.2016.01.118.
  • Vishnuraj, R.; Karuppanan, kk.; Aleem, M.; Pullithadathil, B. Boosting the Performance of NO2 Gas Sensors Based on N-N Type Mesoporous ZnO@In2O3 Heterojunction Nanowires: In Situ Conducting Probe Atomic Force Microscopic Elucidation of Room Temperature Local Electron Transport. Nanoscale Adv. 2020, 2, 4785–4791. DOI: 10.1039/D0NA00318B.
  • Wang, L. W.; Li, J. T.; Wang, Y. H.; Yu, K. F.; Tang, X. Y.; Zhang, Y. Y.; Wang, S. P.; Wei, C. S. Construction of 1D SnO2-Coated ZnO Nanowires Heterojunction for Their Improved N-Butylamine Sensing Performances. Sci. Rep. 2016, 6, 35079. DOI: 10.1038/srep35079.
  • Liu, J. J.; Zhang, L. Y.; Fan, J. J.; Yu, J. G. Semiconductor Gas Sensor for Triethylamine Detection. Small 2021, 2104984. DOI: 10.1002/smll.202104984.
  • Zhang, J.; Qin, Z. Y.; Zeng, D. W.; Xie, C. S. Metal – Oxide Semiconductor Based Gas Sensors: Screening, Preparation, and Integration. Phys. Chem. Chem. Phys. 2017, 19, 6313–6329. DOI: 10.1039/C6CP07799D.
  • Hoa, N. D.; Duy, N. V.; El,-Safty, S. A.; Hieu, N. V. Meso-/Nanoporous Semiconducting Metal Oxides for Gas Sensor Applications. J. Nanomater. 2015, 2015, 1–14. DOI: 10.1155/2015/972025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.