357
Views
2
CrossRef citations to date
0
Altmetric
Articles

Preparation of a stable gel-in-crystallized oil-in-gel type structured W1/O/W2 double emulsions: effect of internal aqueous phase gelation on the system stability

, , , &
Pages 1873-1883 | Received 30 Sep 2021, Accepted 27 Feb 2022, Published online: 17 Mar 2022

References

  • Dickinson, E. Double Emulsions Stabilized by Food Biopolymers. Food Biophys. 2011, 6, 1–11. DOI: 10.1007/s11483-010-9188-6.
  • Muschiolik, G.; Dickinson, E. Double Emulsions Relevant to Food Systems: Preparation, Stability, and Applications. Compr. Rev. Food Sci. Food Saf. 2017, 16, 532–555. DOI: 10.1111/1541-4337.12261.
  • Neumann, S. M.; Wittstock, N.; van der Schaaf, U. S.; Karbstein, H. P. Interactions in Water in Oil in Water Double Emulsions: Systematical Investigations on the Interfacial Properties and Emulsion Structure of the Outer Oil in Water Emulsion. Colloid Surface A 2018, 537, 524–531. DOI: 10.1016/j.colsurfa.2017.10.070.
  • Tamnak, S.; Mirhosseini, H.; Tan, C. P.; Amid, B. T.; Kazemi, M.; Hedayatnia, S. Encapsulation Properties, Release Behavior and Physicochemical Characteristics of Water-in-Oil-in-Water (W/O/W) Emulsion Stabilized with Pectin-Pea Protein Isolate Conjugate and Tween 80. Food Hydrocolloids 2016, 61, 599–608. DOI: 10.1016/j.foodhyd.2016.06.023.
  • Garti, N.; Bisperink, C. Double Emulsions: Progress and Applications. Current Opinion in Colloid & Interface Sci. 1998, 3, 657–667. DOI: 10.1016/S1359-0294(98)80096-4.
  • Lamba, H.; Sathish, K.; Sabikhi, L. Double Emulsions: Emerging Delivery System for Plant Bioactives. Food Bioprocess Technol. 2015, 8, 709–728. DOI: 10.1007/s11947-014-1468-6.
  • Balcaen, M.; Steyls, J.; Schoeppe, A.; Nelis, V.; Van der Meeren, P. Phosphatidylcholine-Depleted Lecithin: A Clean-Label low-HLB Emulsifier to Replace PGPR in w/o and w/o/w Emulsions. J Colloid Interface Sci. 2021, 581, 836–846. DOI: 10.1016/j.jcis.2020.07.149.
  • Andrade, J.; Wright, A. J.; Corredig, M. In Vitro Digestion Behavior of Water-in-Oil-in-Water Emulsions with Gelled Oil-Water Inner Phases. Food Res. Int. 2018, 105, 41–51. DOI: 10.1016/j.foodres.2017.10.070.
  • Herzi, S.; Essafi, W. Different Magnesium Release Profiles from W/O/W Emulsions Based on Crystallized Oils. J. Colloid Interface Sci. 2018, 509, 178–188. DOI: 10.1016/j.jcis.2017.08.089.
  • Mehrnia, M.-A.; Jafari, S.-M.; Makhmal-Zadeh, B. S.; Maghsoudlou, Y. Rheological and Release Properties of Double Nano-Emulsions Containing Crocin Prepared with Angum Gum, Arabic Gum and Whey Protein. Food Hydrocolloids 2017, 66, 259–267. DOI: 10.1016/j.foodhyd.2016.11.033.
  • Paula, D. D.; Ramos, A. M.; de Oliveira, E. B.; Martins, E. M. F.; de Barros, F. A. R.; Vidigal, M.; Costa, N. D.; da Rocha, C. T. Increased Thermal Stability of Anthocyanins at pH 4.0 by Guar Gum in Aqueous Dispersions and in Double Emulsions W/O/W. Int. J. Biol. Macromol. 2018, 117, 665–672. DOI: 10.1016/j.ijbiomac.2018.05.219.
  • Zhu, Q.; Qiu, S.; Zhang, H.; Cheng, Y.; Yin, L. Physical Stability, Microstructure and Micro-Rheological Properties of Water-in-Oil-in-Water (W/O/W) Emulsions Stabilized by Porcine Gelatin. Food Chem. 2018, 253, 63–70. DOI: 10.1016/j.foodchem.2018.01.119.
  • Şen, M.; Erboz, E. N. Determination of Critical Gelation Conditions of Kappa-Carrageenan by Viscosimetric and FT-IR Analyses. Food Res. Int. 2010, 43, 1361–1364. DOI: 10.1016/j.foodres.2010.03.021.
  • Yuguchi, Y.; Thuy, T. T. T.; Urakawa, H.; Kajiwara, K. Structural Characteristics of Carrageenan Gels: Temperature and Concentration Dependence. Food Hydrocolloids 2002, 16, 515–522. DOI: 10.1016/S0268-005X(01)00131-X.
  • Arda, E.; Kara, S.; Pekcan, O. Synergistic Effect of the Locust Bean Gum on the Thermal Phase Transitions of Kappa-Carrageenan Gels. Food Hydrocolloids 2009, 23, 451–459. DOI: 10.1016/j.foodhyd.2008.02.010.
  • Klojdová, I.; Troshchynska, Y.; Štětina, J. Influence of Carrageenan on the Preparation and Stability of w/o/w Double Milk Emulsions. Int. Dairy J. 2018, 87, 54–59. DOI: 10.1016/j.idairyj.2018.06.001.
  • Barak, S.; Mudgil, D. Locust Bean Gum: Processing, Properties and Food applications-A Review. Int. J. Biol. Macromol. 2014, 66, 74–80. DOI: 10.1016/j.ijbiomac.2014.02.017.
  • Martins, J. T.; Cerqueira, M. A.; Bourbon, A. I.; Pinheiro, A. C.; Souza, B. W. S.; Vicente, A. A. Synergistic Effects between Kappa-Carrageenan and Locust Bean Gum on Physicochemical Properties of Edible Films Made Thereof. Food Hydrocolloids 2012, 29, 280–289. DOI: 10.1016/j.foodhyd.2012.03.004.
  • Patel, A. R.; Dumlu, P.; Vermeir, L.; Lewille, B.; Lesaffer, A.; Dewettinck, K. Rheological Characterization of Gel-in-Oil-in-Gel Type Structured Emulsions. Food Hydrocolloids 2015, 46, 84–92. DOI: 10.1016/j.foodhyd.2014.12.029.
  • Pettinelli, N.; Rodriguez-Llamazares, S.; Farrag, Y.; Bouza, R.; Barral, L.; Feijoo-Bandin, S.; Lago, F. Poly(hydroxybutyrate-co-hydroxyvalerate) microparticles embedded in κ-carrageenan/locust bean gum hydrogel as a dual drug delivery carrier. Int. J. Biol. Macromol. 2020, 146, 110–118. DOI: 10.1016/j.ijbiomac.2019.12.193.
  • Sun, R.; Xia, Q. In Vitro Digestion Behavior of (W1/O/W2) Double Emulsions Incorporated in Alginate Hydrogel Beads: Microstructure, Lipolysis, and Release. Food Hydrocolloids 2020, 107, 105950. DOI: 10.1016/j.foodhyd.2020.105950.
  • Huang, C. L.; Chen, Y. B.; Lo, Y. L.; Lin, Y. H. Development of chitosan/β-glycerophosphate/glycerol hydrogel as a thermosensitive coupling agent. Carbohydr. Polym. 2016, 147, 409–414. DOI: 10.1016/j.carbpol.2016.04.028.
  • Wei, Z.; Huang, Q. Developing Organogel-Based Pickering Emulsions with Improved Freeze-Thaw Stability and Hesperidin Bioaccessibility. Food Hydrocolloids 2019, 93, 68–77. DOI: 10.1016/j.foodhyd.2019.01.050.
  • Opawale, F. O.; Burgess, D. J. Influence of Interfacial Properties of Lipophilic Surfactants on Water-in-Oil Emulsion Stability. J. Colloid Interface Sci. 1998, 197, 142–150. DOI: 10.1006/jcis.1997.5222.
  • Szela, g.; H.; Macierzanka, A.; Pawłowicz, R. Properties of W/O Emulsions Stabilized with Acylglycerol Emulsifiers Modified with Zinc Carboxylates. J. Dispersion Sci. Technol. 2004, 25, 173–182. DOI: 10.1081/DIS-120030664.
  • Choi, M. J.; Choi, D.; Lee, J.; Jo, Y. J. Encapsulation of a Bioactive Peptide in a Formulation of W-1/O/W-2-Type Double Emulsions: Formation and Stability. Food Structure-Netherlands 2020, 25, 100145. DOI: 10.1016/j.foostr.2020.100145.
  • Gu, L. P.; McClements, D. J.; Li, J. Y.; Su, Y. J.; Yang, Y. J.; Li, J. H. Formulation of Alginate/Carrageenan Microgels to Encapsulate, Protect and Release Immunoglobulins: Egg Yolk IgY. Food Hydrocolloids 2021, 112, 106349. DOI: 10.1016/j.foodhyd.2020.106349.
  • Nochos, A.; Douroumis, D.; Bouropoulos, N. In Vitro Release of Bovine Serum Albumin from Alginate/HPMC Hydrogel Beads. Carbohydr. Polym. 2008, 74, 451–457. DOI: 10.1016/j.carbpol.2008.03.020.
  • Jo, Y. J.; van der Schaaf, U. S. Fabrication and Characterization of Double (W-1/O/W-2) Emulsions Loaded with Bioactive Peptide/Polysaccharide Complexes in the Internal Water (W-1) Phase for Controllable Release of Bioactive Peptide. Food Chem. 2021, 344, 128619. DOI: 10.1016/j.foodchem.2020.128619.
  • Iijima, M.; Hatakeyama, T.; Takahashi, M.; Hatakeyama, H. Effect of Thermal History on Kappa-Carrageenan Hydrogelation by Differential Scanning Calorimetry. Thermochim. Acta 2007, 452, 53–58. DOI: 10.1016/j.tca.2006.10.019.
  • Caram-Lelham, N.; Hed, F.; Sundelöf, L.-O. Adsorption of Charged Amphiphiles to Oppositely Charged polysaccharides - A Study of the Influence of Polysaccharide Structure and Hydrophobicity of the Amphiphile Molecule. Biopolymers 1997, 41, 765–772. DOI: 10.1002/(SICI)1097-0282(199706)41:7<765::AID-BIP5>3.0.CO;2-N.
  • Ghosh, S.; Rousseau, D. Fat Crystals and Water-in-Oil Emulsion Stability. Current Opinion in Colloid & Interface Sci. 2011, 16, 421–431. DOI: 10.1016/j.cocis.2011.06.006.
  • Ghosh, S.; Tran, T.; Rousseau, D. Comparison of Pickering and Network Stabilization in Water-in-Oil Emulsions. Langmuir 2011, 27, 6589–6597. DOI: 10.1021/la200065y.
  • Nadin, M.; Rousseau, D.; Ghosh, S. Fat Crystal-Stabilized Water-in-Oil Emulsions as Controlled Release Systems. LWT - Food Science Technol. 2014, 56, 248–255. DOI: 10.1016/j.lwt.2013.10.044.
  • Frasch-Melnik, S.; Spyropoulos, F.; Norton, I. T. W1/O/W2 double emulsions stabilised by fat crystals-formulation, stability and salt release . J. Colloid Interface Sci. 2010, 350, 178–185. DOI: 10.1016/j.jcis.2010.06.039.
  • Fernandez-Martin, F.; Freire, M.; Bou, R.; Cofrades, S.; Jimenez-Colmenero, F. Olive Oil Based Edible W/O/W Emulsions Stability as Affected by Addition of Some Acylglycerides. J. Food Eng. 2017, 196, 18–26. DOI: 10.1016/j.jfoodeng.2016.10.011.
  • van Boekel, M. A. J. S.; Walstra, P. Stability of Oil-in-Water Emulsions with Crystals in the Disperse Phase. Colloids Surfaces 1981, 3, 109–118. DOI: 10.1016/0166-6622(81)80071-6.
  • Bou, R.; Cofrades, S.; Jiménez-Colmenero, F. Physicochemical Properties and Riboflavin Encapsulation in Double Emulsions with Different Lipid Sources. LWT - Food Science Technol. 2014, 59, 621–628. DOI: 10.1016/j.lwt.2014.06.044.
  • Perez-Moral, N.; Watt, S.; Wilde, P. Comparative Study of the Stability of Multiple Emulsions Containing a Gelled or Aqueous Internal Phase. Food Hydrocolloids 2014, 42, 215–222. DOI: 10.1016/j.foodhyd.2014.05.023.
  • Håkansson, A.; Trägårdh, C.; Bergenståhl, B. Studying the Effects of Adsorption, Recoalescence and Fragmentation in a High Pressure Homogenizer Using a Dynamic Simulation Model. Food Hydrocolloids 2009, 23, 1177–1183. DOI: 10.1016/j.foodhyd.2008.10.003.
  • Surh, J.; Vladisavljevi Cacute, G. T.; Mun, S.; McClements, D. J. Preparation and Characterization of Water/Oil and Water/Oil/Water Emulsions Containing Biopolymer-Gelled Water Droplets. J. Agric. Food Chem. 2007, 55, 175–184. DOI: 10.1021/jf061637q.
  • Balcaen, M.; Vermeir, L.; Declerck, A.; Van der Meeren, P. Van Der Meeren, P. Influence of Internal Water Phase Gelation on the Shear- and Osmotic Sensitivity of W/O/W-Type Double Emulsions. Food Hydrocolloids 2016, 58, 356–363. DOI: 10.1016/j.foodhyd.2016.03.011.
  • Bayarri, S.; Durán, L.; Costell, E. Influence of Sweeteners on the Viscoelasticity of Hydrocolloids Gelled Systems. Food Hydrocolloids 2004, 18, 611–619. DOI: 10.1016/j.foodhyd.2003.10.004.
  • Oppermann, A. K. L.; Renssen, M.; Schuch, A.; Stieger, M.; Scholten, E. Effect of Gelation of Inner Dispersed Phase on Stability of (w1/o/w2) Multiple Emulsions. Food Hydrocolloids 2015, 48, 17–26. DOI: 10.1016/j.foodhyd.2015.01.027.
  • Liu, J.; Kharat, M.; Tan, Y.; Zhou, H.; Mundo, J. L. M.; McClements, D. J. Impact of Fat Crystallization on the Resistance of W/O/W Emulsions to Osmotic Stress: Potential for Temperature-Triggered Release. Food Res. Int. 2020, 134, 109273. DOI: 10.1016/j.foodres.2020.109273.
  • Hattrem, M. N.; Dille, M. J.; Seternes, T.; Draget, K. I. Macro- vs. micromolecular Stabilisation of W/O/W-Emulsions. Food Hydrocolloids 2014, 37, 77–85. DOI: 10.1016/j.foodhyd.2013.10.024.
  • Camacho, M. M.; Martı́nez-Navarrete, N.;.; Chiralt, A. Influence of Locust Bean Gum/Lambda-Carrageenan Mixtures on Whipping and Mechanical Properties and Stability of Dairy Creams. Food Res. Int. 1998, 31, 653–658. DOI: 10.1016/S0963-9969(99)00041-1.
  • Sun, R.; Zhang, M.; Xia, Q. Improved Stability of (W-1/O/W-2) Double Emulsions Based on Dual Gelation: Oleogels and Hydrogels. J. Food Process Eng. 2019, 42, 1–14. DOI: 10.1111/jfpe.13186.
  • Tian, H.; Xiang, D.; Li, C. Tea Polyphenols Encapsulated in W/O/W Emulsions with Xanthan Gum-Locust Bean Gum Mixture: Evaluation of Their Stability and Protection. Int. J. Biol. Macromol. 2021, 175, 40–48. DOI: 10.1016/j.ijbiomac.2021.01.161.
  • Guzman-Diaz, D. A.; Trevino-Garza, M. Z.; Rodriguez-Romero, B. A.; Gallardo-Rivera, C. T.; Amaya-Guerra, C. A.; Baez-Gonzalez, J. G. Development and Characterization of Gelled Double Emulsions Based on Chia (Salvia Hispanica L.) Mucilage Mixed with Different Biopolymers and Loaded with Green Tea Extract (Camellia Sinensis). Foods 2019, 8, 677. DOI: 10.3390/foods8120677.
  • Liu, J.; Zhou, H.; Muriel Mundo, J. L.; Tan, Y.; Pham, H.; McClements, D. J. Fabrication and Characterization of W/O/W Emulsions with Crystalline Lipid Phase. J. Food Eng. 2020, 273, 109826. DOI: 10.1016/j.jfoodeng.2019.109826.
  • Szliszka, E.; Czuba, Z. P.; Domino, M.; Mazur, B.; Zydowicz, G.; Krol, W. Ethanolic Extract of Propolis (EEP) Enhances the Apoptosis- Inducing Potential of TRAIL in Cancer Cells. Molecules 2009, 14, 738–754. DOI: 10.3390/molecules14020738.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.