297
Views
6
CrossRef citations to date
0
Altmetric
Articles

Biochar-loaded nZVI/Ni bimetallic particles for hexavalent chromium removal from aqueous solution

, , &
Pages 1953-1964 | Received 27 Jul 2021, Accepted 07 Mar 2022, Published online: 21 Mar 2022

References

  • Hokkanen, S.; Bhatnagar, A.; Repo, E.; Lou, S.; Sillanpää, M. Calcium Hydroxyapatite Microfibrillated Cellulose Composite as a Potential Adsorbent for the Removal of Cr(VI) from Aqueous Solution. Chem. Eng. J. 2016, 283, 445–452. DOI: 10.1016/j.cej.2015.07.035.
  • Zhu, F.; Ma, S.; Liu, T.; Deng, X. Green Synthesis of Nano Zero-Valent Iron/Cu by Green Tea to Remove Hexavalent Chromium from Groundwater. J. Clean. Prod. 2018, 174, 184–190. DOI: 10.1016/j.jclepro.2017.10.302.
  • Suksabye, P.; Thiravetyan, P. Cr(VI) Adsorption from Electroplating Plating Wastewater by Chemically Modified Coir Pith. J. Environ. Manage. 2012, 102, 1–8. [Database] DOI: 10.1016/j.jenvman.2011.10.020.
  • Chen, T.; Zhou, Z.; Xu, S.; Wang, H.; Lu, W. Adsorption Behavior Comparison of Trivalent and Hexavalent Chromium on Biochar Derived from Municipal Sludge. Bioresour. Technol. 2015, 190, 388–394. DOI: 10.1016/j.biortech.2015.04.115.
  • Zuckerman, A. J. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. J. Clin. Pathol. 1995, 48, 691–691. DOI: 10.1136/jcp.48.7.691-a.
  • Zhitkovich, A. Chromium in Drinking Water: Sources, Metabolism, and Cancer Risks. Chem Res Toxicol. 2011, 24, 1617–1629. DOI: 10.1021/tx200251t.
  • Elwakeel, K. Z.; Elgarahy, A. M.; Khan, Z. A.; Almughamisi, M. S.; Al-Bogami, A. S. Perspectives regarding Metal/Mineral-Incorporating Materials for Water Purification: With Special Focus on Cr(vi) Removal. Mater. Adv. 2020, 1, 1546–1574. DOI: 10.1039/d0ma00153h.
  • Zhao, J.; Li, Z.; Wang, J.; Li, Q.; Wang, X. Capsular Polypyrrole Hollow Nanofibers: An Efficient Recyclable Adsorbent for Hexavalent Chromium Removal. J. Mater. Chem. A. 2015, 3, 15124–15132. DOI: 10.1039/C5TA02525G.
  • Dong, H.; Guan, X.; Lo, I. M. C. Fate of as(V)-Treated Nano Zero-Valent Iron: Determination of Arsenic Desorption Potential under Varying Environmental Conditions by Phosphate Extraction. Water Res. 2012, 46, 4071–4080. DOI: 10.1016/j.watres.2012.05.015.
  • Dong, H.; Zhao, F.; Zeng, G.; Tang, L.; Fan, C.; Zhang, L.; Zeng, Y.; He, Q.; Xie, Y.; Wu, Y. Aging Study on Carboxymethyl Cellulose-Coated Zero-Valent Iron Nanoparticles in Water: Chemical Transformation and Structural Evolution. J. Hazard. Mater. 2016, 312, 234–242. DOI: 10.1016/j.jhazmat.2016.03.069.
  • Fu, F.; Dionysiou, D. D.; Liu, H. The Use of Zero-Valent Iron for Groundwater Remediation and Wastewater Treatment: A Review. J. Hazard. Mater. 2014, 267, 194–205. DOI: 10.1016/j.jhazmat.2013.12.062.
  • He, F.; Zhao, D.; Paul, C. Field Assessment of Carboxymethyl Cellulose Stabilized Iron Nanoparticles for in Situ Destruction of Chlorinated Solvents in Source Zones. Water Res. 2010, 44, 2360–2370. DOI: 10.1016/j.watres.2009.12.041.
  • Fu, F.; Ma, J.; Xie, L.; Tang, B.; Han, W.; Lin, S. Chromium Removal Using Resin Supported Nanoscale Zero-Valent Iron. J. Environ. Manage. 2013, 128, 822–827. DOI: 10.1016/j.jenvman.2013.06.044.
  • Qian, L.; Liu, S.; Zhang, W.; Chen, Y.; Ouyang, D.; Han, L.; Yan, J.; Chen, M. Enhanced Reduction and Adsorption of Hexavalent Chromium by Palladium and Silicon Rich Biochar Supported Nanoscale Zero-Valent Iron. J. Colloid Interface Sci. 2019, 533, 428–436. DOI: 10.1016/j.jcis.2018.08.075.
  • Xing, R.; He, J.; Hao, P.; Zhou, W. Graphene Oxide-Supported Nanoscale Zero-Valent Iron Composites for the Removal of Atrazine from Aqueous Solution. Colloids Surf. Physicochem. Eng. Asp. 2020, 589, 124466. DOI: 10.1016/j.colsurfa.2020.124466.
  • Qian, L.; Shang, X.; Zhang, B.; Zhang, W.; Su, A.; Chen, Y.; Ouyang, D.; Han, L.; Yan, J.; Chen, M. Enhanced Removal of Cr(VI) by Silicon Rich Biochar-Supported Nanoscale Zero-Valent Iron. Chemosphere 2019, 215, 739–745. DOI: 10.1016/j.chemosphere.2018.10.030.
  • Zhu, F.; He, S.; Liu, T. Effect of pH, Temperature and co-Existing Anions on the Removal of Cr(VI) in Groundwater by Green Synthesized nZVI/Ni. Ecotoxicol. Environ. Saf. 2018, 163, 544–550. DOI: 10.1016/j.ecoenv.2018.07.082.
  • Peng, X.; Liu, X.; Zhou, Y.; Peng, B.; Tang, L.; Luo, L.; Yao, B.; Deng, Y.; Tang, J.; Zeng, G. New Insights into the Activity of a Biochar Supported Nanoscale Zerovalent Iron Composite and Nanoscale Zero Valent Iron under Anaerobic or Aerobic Conditions. RSC Adv. 2017, 7, 8755–8761. DOI: 10.1039/C6RA27256H.
  • Zhou, Y.; Gao, B.; Zimmerman, A. R.; Chen, H.; Zhang, M.; Cao, X. Biochar-Supported Zerovalent Iron for Removal of Various Contaminants from Aqueous Solutions. Bioresour. Technol. 2014, 152, 538–542. DOI: 10.1016/j.biortech.2013.11.021.
  • Wu, H.; Wei, W.; Xu, C.; Meng, Y.; Bai, W.; Yang, W.; Lin, A. Polyethylene Glycol-Stabilized Nano Zero-Valent Iron Supported by Biochar for Highly Efficient Removal of Cr(VI). Ecotoxicol. Environ. Saf. 2020, 188, 109902. DOI: 10.1016/j.ecoenv.2019.109902.
  • Yang, J.; Ma, T.; Li, X.; Tu, J.; Dang, Z.; Yang, C. Removal of Heavy Metals and Metalloids by Amino-Modified Biochar Supporting Nanoscale Zero-Valent Iron. J. Environ. Qual. 2018, 47, 1196–1204. DOI: 10.2134/jeq2017.08.0320.
  • Mandal, S.; Pu, S.; He, L.; Ma, H.; Hou, D. Biochar Induced Modification of Graphene Oxide & nZVI and Its Impact on Immobilization of Toxic Copper in Soil. Environ. Pollut. 2020, 259, 113851. DOI: 10.1016/j.envpol.2019.113851.
  • Li, L.; Zhong, D.; Xu, Y.; Zhong, N. A Novel Superparamagnetic Micro-Nano-Bio-Adsorbent PDA/Fe3O4/BC for Removal of Hexavalent Chromium Ions from Simulated and Electroplating Wastewater. Environ. Sci. Pollut. Res. Int. 2019, 26, 23981–23993. DOI: 10.1007/s11356-019-05674-1.
  • Dou, X.; Li, R.; Zhao, B.; Liang, W. Arsenate Removal from Water by Zero-Valent Iron/Activated Carbon Galvanic Couples. J. Hazard. Mater. 2010, 182, 108–114. DOI: 10.1016/j.jhazmat.2010.06.004.
  • Ozkantar, N.; Soylak, M.; Tuzen, M. Ultrasonic-Assisted Supramolecular Solvent Liquid-Liquid Microextraction for Inorganic Chromium Speciation in Water Samples and Determination by UV-Vis Spectrophotometry. At. Spectrosc. 2020, 41, 43–50. DOI: 10.46770/AS.2020.01.006.
  • Jiang, C.; Yang, S.; Gan, N.; Pan, H.; Liu, H. A Method for Determination of [Fe3+] /[Fe2+] Ratio in Superparamagnetic Iron Oxide. J. Magn. Magn. Mater. 2017, 439, 126–134. DOI: 10.1016/j.jmmm.2017.04.073.
  • Rajabi, H. R.; Razmpour, S. Synthesis, Characterization and Application of Ion Imprinted Polymeric Nanobeads for Highly Selective Preconcentration and Spectrophotometric Determination of Ni2+ Ion in Water Samples. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2016, 153, 45–52. DOI: 10.1016/j.saa.2015.08.010.
  • Jiang, X.; An, Q.-D.; Xiao, Z.-Y.; Zhai, S.-R.; Shi, Z. Mussel-Inspired Surface Modification of Untreated Wasted Husks with Stable Polydopamine/Polyethylenimine for Efficient Continuous Cr(VI) Removal. Mater. Res. Bull. 2018, 102, 218–225. DOI: 10.1016/j.materresbull.2018.02.037.
  • Shi, S.; Yang, J.; Liang, S.; Li, M.; Gan, Q.; Xiao, K.; Hu, J. Enhanced Cr(VI) Removal from Acidic Solutions Using Biochar Modified by Fe3O4@SiO2-NH2 Particles. Sci. Total Environ. 2018, 628–629, 499–508. DOI: 10.1016/j.scitotenv.2018.02.091.
  • Zhang, X.; Shen, L.; Chen, Z.; Megharaj, M.; Naidu, R. Kaolinite-Supported Nanoscale Zero-Valent Iron for Removal of Pb2+ from Aqueous Solution: Reactivity, Characterization and Mechanism. Water Res. 2011, 45, 3481–3488. DOI: 10.1016/j.watres.2011.04.010.
  • Inyang, M. I.; Gao, B.; Yao, Y.; Xue, Y.; Zimmerman, A.; Mosa, A.; Pullammanappallil, P.; Ok, Y. S.; Cao, X. A Review of Biochar as a Low-Cost Adsorbent for Aqueous Heavy Metal Removal. Crit. Rev. Environ. Sci. Technol. 2016, 46, 406–433. DOI: 10.1080/10643389.2015.1096880.
  • Burakov, A. E.; Galunin, E. V.; Burakova, I. V.; Kucherova, A. E.; Agarwal, S.; Tkachev, A. G.; Gupta, V. K. Adsorption of Heavy Metals on Conventional and Nanostructured Materials for Wastewater Treatment Purposes: A Review. Ecotoxicol. Environ. Saf. 2018, 148, 702–712. DOI: 10.1016/j.ecoenv.2017.11.034.
  • Li, H.; Dong, X.; da Silva, E. B.; de Oliveira, L. M.; Chen, Y.; Ma, L. Q. Mechanisms of Metal Sorption by Biochars: Biochar Characteristics and Modifications. Chemosphere 2017, 178, 466–478. DOI: 10.1016/j.chemosphere.2017.03.072.
  • Zhu, L.; Tong, L.; Zhao, N.; Li, J.; Lv, Y. Coupling Interaction between Porous Biochar and Nano Zero Valent Iron/Nano α-Hydroxyl Iron Oxide Improves the Remediation Efficiency of Cadmium in Aqueous Solution. Chemosphere 2019, 219, 493–503. DOI: 10.1016/j.chemosphere.2018.12.013.
  • Ma, Y.; Lv, X.; Yang, Q.; Wang, Y.; Chen, X. Reduction of Carbon Tetrachloride by Nanoscale Palladized Zero-Valent Iron@ Graphene Composites: Kinetics, Activation Energy, Effects of Reaction Conditions and Degradation Mechanism. Appl. Catal. A. Gen. 2017, 542, 252–261. DOI: 10.1016/j.apcata.2017.05.028.
  • Huang, P.; Ye, Z.; Xie, W.; Chen, Q.; Li, J.; Xu, Z.; Yao, M. Rapid Magnetic Removal of Aqueous Heavy Metals and Their Relevant Mechanisms Using Nanoscale Zero Valent Iron (nZVI) Particles. Water Res. 2013, 47, 4050–4058. DOI: 10.1016/j.watres.2013.01.054.
  • Mills, P.; Sullivan, J. L. A Study of the Core level electrons in Iron and Its Three Oxides by Means of X-Ray Photoelectron Spectroscopy. JPhD 2000, 16, 723. DOI: 10.1088/0022-3727/16/5/005.
  • Jin, X.; Zhuang, Z.; Yu, B.; Chen, Z.; Chen, Z. Functional Chitosan-Stabilized Nanoscale Zero-Valent Iron Used to Remove Acid Fuchsine with the Assistance of Ultrasound. Carbohydr. Polym. 2016, 136, 1085–1090. DOI: 10.1016/j.carbpol.2015.10.002.
  • Lu, X.; Zhao, C. Electrodeposition of Hierarchically Structured Three-Dimensional Nickel–Iron Electrodes for Efficient Oxygen Evolution at High Current Densities. Nat. Commun. 2015, 6, 7616. DOI: 10.1038/ncomms7616.
  • Mandal, S.; Sarkar, B.; Bolan, N.; Ok, Y. S.; Naidu, R. Enhancement of Chromate Reduction in Soils by Surface Modified Biochar. J. Environ. Manage. 2017, 186, 277–284. DOI: 10.1016/j.jenvman.2016.05.034.
  • Liu, P.; Ptacek, C. J.; Blowes, D. W.; Finfrock, Y. Z.; Liu, Y. Characterization of Chromium Species and Distribution during Cr(VI) Removal by Biochar Using Confocal micro-X-Ray Fluorescence Redox Mapping and X-Ray Absorption Spectroscopy. Environ. Int. 2020, 134, 105216. DOI: 10.1016/j.envint.2019.105216.
  • Huang, L.; Zhou, S.; Jin, F.; Huang, J.; Bao, N. Characterization and Mechanism Analysis of Activated Carbon Fiber Felt-Stabilized Nanoscale Zero-Valent Iron for the Removal of Cr(VI) from Aqueous Solution. Colloids Surf. Physicochem. Eng. Asp. 2014, 447, 59–66. DOI: 10.1016/j.colsurfa.2014.01.037.
  • Zhao, L.; Zhao, Y.; Yang, B.; Teng, H. Application of Carboxymethyl Cellulose–Stabilized Sulfidated Nano Zerovalent Iron for Removal of Cr(VI) in Simulated Groundwater. Water Air Soil Pollut. 2019, 230, 1–14. DOI: 10.1007/s11270-019-4166-1.
  • Jiao, C.; Tan, X.; Lin, A.; Yang, W. Preparation of Activated Carbon Supported Bead String Structure Nano Zero Valent Iron in a Polyethylene Glycol-Aqueous Solution and Its Efficient Treatment of Cr(VI) Wastewater. Molecules 2019, 25, 47. DOI: 10.3390/molecules25010047.
  • Chen, S.-S.; Cheng, C.-Y.; Li, C.-W.; Chai, P.-H.; Chang, Y.-M. Reduction of Chromate from Electroplating Wastewater from pH 1 to 2 Using Fluidized Zero Valent Iron Process. J. Hazard. Mater. 2007, 142, 362–367. DOI: 10.1016/j.jhazmat.2006.08.029.
  • Li, L.; Xu, Y.; Zhong, D.; Zhong, N. CTAB-Surface-Functionalized Magnetic MOF@MOF Composite Adsorbent for Cr(VI) Efficient Removal from Aqueous Solution. Colloids Surf. Physicochem. Eng. Asp. 2020, 586, 124255. DOI: 10.1016/j.colsurfa.2019.124255.
  • Zhang, W-x.; Li, X-q.; Cao, J. Reply to. Comments on 'Stoichiometry of Cr(VI) Immobilization Using Nanoscale Zerovalent Iron (nZVI): A Study with High-Resolution X-Ray Photoelectron Spectroscopy (HR-XPS). Ind. Eng. Chem. Res. 2009, 48, 2298–2298. DOI: 10.1021/ie8016434.
  • Ohta, K.; Tanaka, K. Determination of Common Inorganic Anions, Magnesium and Calcium Ions in Various Environmental Waters by Indirect UV-Photometric Detection Ion Chromatography Using Trimellitic Acid–EDTA as Eluent. Anal. Chim. Acta 1998, 373, 189–195. DOI: 10.1016/S0003-2670(98)00373-0.
  • Lo, I. M. C.; Lam, C. S. C.; Lai, K. C. K. Hardness and Carbonate Effects on the Reactivity of Zero-Valent Iron for Cr(VI) Removal. Water Res. 2006, 40, 595–605. DOI: 10.1016/j.watres.2005.11.033.
  • Yang, Z.-H.; Cao, J.; Chen, Y.-P.; Li, X.; Xiong, W.-P.; Zhou, Y.-Y.; Zhou, C.-Y.; Xu, R.; Zhang, Y. R. Mn-Doped Zirconium Metal-Organic Framework as an Effective Adsorbent for Removal of Tetracycline and Cr(VI) from Aqueous Solution. Microporous Mesoporous Mater. 2019, 277, 277–285. DOI: 10.1016/j.micromeso.2018.11.014.
  • Mak, M. S. H.; Rao, P.; Lo, I. M. C. Effects of Hardness and Alkalinity on the Removal of Arsenic(V) from Humic Acid-Deficient and Humic Acid-Rich Groundwater by Zero-Valent Iron. Water Res. 2009, 43, 4296–4304. DOI: 10.1016/j.watres.2009.06.022.
  • Setshedi, K. Z.; Bhaumik, M.; Songwane, S.; Onyango, M. S.; Maity, A. Exfoliated Polypyrrole-Organically Modified Montmorillonite Clay Nanocomposite as a Potential Adsorbent for Cr(VI) Removal. Chem. Eng. J. 2013, 222, 186–197. DOI: 10.1016/j.cej.2013.02.061.
  • Tyruvola, K.; Nikolaidis, N. P.; Veranis, N.; Kallithrakas-Kontos, N.; Koulouridakis, P. E. Arsenic Removal from Geothermal Waters with Zero-Valent Iron-Effect of Temperature, Phosphate and Nitrate. Water Res. 2006, 40, 2375–2386. DOI: 10.1016/j.watres.2006.04.006.
  • Hadjittofi, L.; Prodromou, M.; Pashalidis, I. Activated Biochar Derived from Cactus Fibres-Preparation, Characterization and Application on Cu(II) Removal from Aqueous Solutions. Bioresour Technol. 2014, 159, 460–464. DOI: 10.1016/j.biortech.2014.03.073.
  • Shin, K.-Y.; Hong, J.-Y.; Jang, J. Heavy Metal Ion Adsorption Behavior in Nitrogen-Doped Magnetic Carbon Nanoparticles: Isotherms and Kinetic Study. J. Hazard. Mater. 2011, 190, 36–44. DOI: 10.1016/j.jhazmat.2010.12.102.
  • Lu, J.; Xu, K.; Yang, J.; Hao, Y.; Cheng, F. Nano Iron Oxide Impregnated in Chitosan Bead as a Highly Efficient Sorbent for Cr(VI) Removal from Water. Carbohydr. Polym. 2017, 173, 28–36. DOI: 10.1016/j.carbpol.2017.05.070.
  • Zhao, Y.-G.; Shen, H.-Y.; Pan, S.-D.; Hu, M.-Q.; Xia, Q.-H. Preparation and Characterization of Amino-Functionalized nano-Fe3O4 Magnetic Polymer Adsorbents for Removal of Chromium(VI) Ions. JMatS 2010, 45, 5291–5301. DOI: 10.1007/s10853-010-4574-5.
  • Song, L.; Liu, F.; Zhu, C.; Li, A. Facile One-Step Fabrication of Carboxymethyl Cellulose Based Hydrogel for Highly Efficient Removal of Cr(VI) under Mild Acidic Condition. Chem. Eng. J. 2019, 369, 641–651. DOI: 10.1016/j.cej.2019.03.126.
  • Fu, R.; Zhang, X.; Xu, Z.; Guo, X.; Bi, D.; Zhang, W. Fast and Highly Efficient Removal of Chromium (VI) Using Humus-Supported Nanoscale Zero-Valent Iron: Influencing Factors, Kinetics and Mechanism. Sep. Purif. Technol. 2017, 174, 362–371. DOI: 10.1016/j.seppur.2016.10.058.
  • Liu, F.; Zhang, W.; Tao, L.; Hao, B.; Zhang, J. Simultaneous Photocatalytic Redox Removal of Chromium(VI) and Arsenic(III) by Hydrothermal Carbon-Sphere@nano-Fe3O4. Environ. Sci.: Nano. 2019, 6, 937–947. DOI: 10.1039/C8EN01362D.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.