331
Views
0
CrossRef citations to date
0
Altmetric
Articles

Efficient oil-water separation with amphipathic magnetic nanoparticles of Fe3O4@TiO2

, , , , , & show all
Pages 1965-1971 | Received 05 Oct 2021, Accepted 09 Mar 2022, Published online: 22 Mar 2022

References

  • Chen, P. C.; Xu, Z. K. Mineral-Coated Polymer Membranes with Superhydrophilicity and Underwater Superoleophobicity for Effective Oil/Water Separation. Sci. Rep. 2013, 3, 2776–2776. DOI: 10.1038/srep02776.
  • Wang, L.; Yung-TseHung; Shammas, N. Advanced Physicochemical Treatment Processes. In Handbook of Environmental Engineering, Humana Press, Totowa, NJ, 2006; 4, 710pp
  • Heidenreich, S.; Schmidt, M.; Bachmann, J.; Harrach, B. Apoptosis of Monocytes Cultured from Long-Term Hemodialysis Patients. Kidney Int 1996, 49, 792–799. DOI: 10.1038/ki.1996.110.
  • Yu, L.; Han, M.; He, F. A Review of Treating Oily Wastewater. Arabian J. Chem. 2017, 10, S1913–S1922. DOI: 10.1016/j.arabjc.2013.07.020.
  • Ramajo, D. E.; Raviculé, M.; Mocciaro, C.; Weidmann, P.; Nigro, N. M. Numerical and Experimental Evaluation of Skimmer Tank Technologies for Gravity Separation of Oil in Produced Water. Mecánica Computacional 2012, 31, 3693–3714.
  • Sato, M.; Sumita, I. Experiments on Gravitational Phase Separation of Binary Immiscible Fluids. J. Fluid Mech. 2007, 591, 289–319. DOI: 10.1017/S0022112007008257.
  • O'Brien, K. J.; Prendergast, G. Oil-Water Separation Apparatus Employing a Floating Skimmer, a Hydrocyclone and a Tubular Separation Device. US: 1996.
  • Rajasekhar, T.; Trinadh, M.; Babu, P. V.; Sainath, A.; Reddy, A. Oil–Water Emulsion Separation Using Ultrafiltration Membranes Based on Novel Blends of Poly(Vinylidene Fluoride) and Amphiphilic Tri-Block Copolymer Containing Carboxylic Acid Functional Group. J. Membr. Sci. 2015, 481, 82–93. DOI: 10.1016/j.memsci.2015.01.030.
  • Kwon, W. T.; Park, K.; Han, S. D.; Yoon, S. M.; Kim, J. Y.; Bae, W.; Rhee, Y. W. Investigation of Water Separation from Water-in-Oil Emulsion Using Electric Field. J. Indus. Eng. Chem. 2010, 16, 684–687. DOI: 10.1016/j.jiec.2010.07.018.
  • Ferreira, B.; Ramalho, J.; Lucas, E. F. Demulsification of Water-in-Crude Oil Emulsions by Microwave Radiation: Effect of Aging, Demulsifier Addition, and Selective Heating. Energy Fuels 2013, 27, 615–621. DOI: 10.1021/ef301110m.
  • Lv, W.; Mei, Q.; Xiao, J.; Du, M.; Zheng, Q. 3D Multiscale Superhydrophilic Sponges with Delicately Designed Pore Size for Ultrafast Oil/Water Separation. Adv. Funct. Mater. 2017, 27, 1704293. DOI: 10.1002/adfm.201704293.
  • Yeqiang, L.; Yuan, W. Superhydrophobic/Superoleophilic and Reinforced Ethyl Cellulose Sponges for Oil/Water Separation: Synergistic Strategies of Cross-Linking, Carbon Nanotube Composite, and Nanosilica Modification. ACS Appl Mater Interfaces . 2017, 9, 29167–29176. DOI: 10.1021/acsami.7b09160.
  • Li, Y.; Zheng, X.; Yan, Z.; Tian, D.; Ma, J.; Zhang, X.; Jiang, L. Closed Pore Structured NiCo2O4-Coated Nickel Foams for Stable and Effective Oil/Water Separation. ACS Appl Mater Interfaces. 2017, 9, 29177–29184. DOI: 10.1021/acsami.7b05385.
  • Li, J.; Yan, L.; Zhao, Y.; Zha, F.; Wang, Q.; Lei, Z. One-Step Fabrication of Robust Fabrics with Both-Faced Superhydrophobicity for the Separation and Capture of Oil from Water. Phys. Chem. Chem. Phys. 2015, 17, 6451–6457. DOI: 10.1039/c5cp00154d.
  • Zhang, J.; Seeger, S. Polyester Materials with Superwetting Silicone Nanofilaments for Oil/Water Separation and Selective Oil Absorption. Adv. Funct. Mater. 2011, 21, 4699–4704. DOI: 10.1002/adfm.201101090.
  • Zhang, L.; Zhang, Z.; Peng, W. Smart Surfaces with Switchable Superoleophilicity and Superoleophobicity in Aqueous Media: Toward Controllable Oil/Water Separation. NPG Asia Mater. 2012, 4, e8–e8. DOI: 10.1038/am.2012.14.
  • Lian, P.; Qin, A.; Liao, L.; Zhang, K. Progress on the Nanoscale Spherical TiO2 Photocatalysts: Mechanisms, Synthesis and Degradation Applications. Nano Select 2021, 2, 447–467. DOI: 10.1002/nano.202000091.
  • Suzuki, H.; Amano, T.; Toyooka, T.; Ibuki, Y. Preparation of DNA-Adsorbed TiO2 Particles with High Performance for Purification of Chemical Pollutants. Environ. Sci. Technol. 2008, 42, 8076–8082. DOI: 10.1021/es800948d.
  • Linley, S.; Leshuk, T.; Gu, F. X.. Synthesis of Magnetic Rattle-Type Nanostructures for Use in Water Treatment. ACS Appl Mater Interfaces. 2013, 5, 2540–2548. DOI: 10.1021/am303117g.
  • Li, Z. J.; Huang, Z. W.; Guo, W. L.; Wang, L.; Zheng, L. R.; Chai, Z. F.; Shi, W. Q. Enhanced Photocatalytic Removal of Uranium(VI) from Aqueous Solution by Magnetic TiO2/Fe3O4 and Its Graphene Composite. Environ. Sci. Technol. 2017, 51, 5666–5674. DOI: 10.1021/acs.est.6b05313.
  • Tan, L.; Zhang, X.; Liu, Q.; Jing, X.; Liu, J.; Song, D.; Hu, S.; Liu, L.; Wang, J. Synthesis of Fe3O4@TiO2 Core–Shell Magnetic Composites for Highly Efficient Sorption of Uranium (VI). Colloids Surf, A 2015, 469, 279–286. DOI: 10.1016/j.colsurfa.2015.01.040.
  • Cakmak, N. K.; Said, Z.; Sundar, L. S.; Ali, Z. M.; Tiwari, A. K. Preparation, Characterization, Stability, and Thermal Conductivity of rGO-Fe3O4-TiO2 Hybrid Nanofluid: An Experimental Study. Powder Technol. 2020, 372, 235–245. DOI: 10.1016/j.powtec.2020.06.012.
  • Papaphilippou, P. C.; Pourgouris, A.; Marinica, O.; Taculescu, A.; Athanasopoulos, G. I.; Vekas, L.; Krasia-Christoforou, T. Fabrication and Characterization of Superparamagnetic and Thermoresponsive Hydrogels Based on Oleic-Acid-Coated Fe3O4 Nanoparticles, Hexa(Ethylene Glycol) Methyl Ether Methacrylate and 2-(Acetoacetoxy)Ethyl Methacrylate. J. Magn. Magn. Mater. 2011, 323, 557–563. DOI: 10.1016/j.jmmm.2010.10.009.
  • He, Q.; Zhang, Z.; Xiong, J.; Xiong, Y.; Xiao, H. A Novel Biomaterial—Fe3O4:TiO2 Core-Shell Nano Particle with Magnetic Performance and High Visible Light Photocatalytic Activity. Opt. Mater. 2008, 31, 380–384. DOI: 10.1016/j.optmat.2008.05.011.
  • Schindler, A.; Neumann, G.; Rager, A.; Füglein, E.; Blumm, J.; Denner, T. A Novel Direct Coupling of Simultaneous Thermal Analysis (STA) and Fourier Transform-Infrared (FT-IR) Spectroscopy. J. Therm. Anal. Calorim. 2013, 113, 1091–1102. DOI: 10.1007/s10973-013-3072-9.
  • Hong, J. S.; Fischer, P. Bulk and Interfacial Rheology of Emulsions Stabilized with Clay Particles. Colloids Surf, A 2016, 508, 316–326. DOI: 10.1016/j.colsurfa.2016.08.040.
  • Pensini, E.; Vleugels, L.; Frissen, M.; Wadhwa, K.; Lier, R. v.; Kwakkenbos, G. A Novel Perspective on Emulsion Stabilization in Steam Crackers. Colloids Surf, A 2017, 516, 48–62. DOI: 10.1016/j.colsurfa.2016.12.020.
  • Zeng, J. W.; Guo, Z. G. Superhydrophilic and Underwater Superoleophobic MFI Zeolite-Coated Film for Oil/Water Separation. Colloid. Surf. Physicochem. Eng. Aspect. 2014, 444, 283–288. DOI: 10.1016/j.colsurfa.2013.12.071.
  • Huang, Z. M.; Li, P.; Luo, X.; Jiang, X.; Liu, L.; Ye, F.; Kuang, J. Z.; Luo, Y.; Mi, Y. Z. Synthesis of a Novel Environmentally Friendly and Interfacially Active CNTs/SiO2 Demulsifier for W/O Crude Oil Emulsion Separation. Energy Fuels. 2019, 33, 7166–7175. DOI: 10.1021/acs.energyfuels.9b01217.
  • Zhu, Q.; Tao, F.; Pan, Q. M. Fast and Selective Removal of Oils from Water Surface via Highly Hydrophobic Core-Shell Fe2O3@C Nanoparticles under Magnetic Field. ACS Appl Mater Interfaces. 2010, 2, 3141–3146. DOI: 10.1021/am1006194.
  • Zhang, D.; Jin, X. Z.; Huang, T.; Zhang, N.; Qi, X. D.; Yang, J. H.; Zhou, Z. W.; Wang, Y. Electrospun Fibrous Membranes with Dual-Scaled Porous Structure: Super Hydrophobicity, Super Lipophilicity, Excellent Water Adhesion, and anti-Icing for Highly Efficient Oil Adsorption/Separation. ACS Appl Mater Interfaces. 2019, 11, 5073–5083. DOI: 10.1021/acsami.8b19523.
  • Yu, L. H.; Zhou, X.; Jiang, W. Low-Cost and Superhydrophobic Magnetic Foam as an Absorbent for Oil and Organic Solvent Removal. Ind. Eng. Chem. Res. 2016, 55, 9498–9506. DOI: 10.1021/acs.iecr.6b02278.
  • Yan, T.; Chen, X. Q.; Zhang, T. H.; Yu, J. G.; Jiang, X. Y.; Hu, W. J. H.; Jiao, F. P. A Magnetic pH-Induced Textile Fabric with Switchable Wettability for Intelligent Oil/Water Separation. Chem. Eng. J. 2018, 347, 52–63. DOI: 10.1016/j.cej.2018.04.021.
  • Chen, G. P.; Zhang, G. F.; Yang, F. C. The Elaboration of Multifunctional Hollow Core-Shell Fe3O4@PDA@TiO2 Architecture with Dual Magnetic- and Photo-Responsive Performance. New J. Chem. 2020, 44, 3487–3492. DOI: 10.1039/C9NJ05651C.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.