159
Views
1
CrossRef citations to date
0
Altmetric
Articles

Effect of precursor chemistry on purity and characterization of CaCO3 nanoparticles and its application for adsorption of methyl orange from aqueous solutions

ORCID Icon & ORCID Icon
Pages 1991-2000 | Received 27 Aug 2021, Accepted 17 Mar 2022, Published online: 05 Apr 2022

References

  • Shahbazkhany, S.; Salehi, M.; Mousavi-Kamazani, M.; Salarvand, Z. Zn0.94Mn0.06O for Adsorption and Photo-Degradation of Methyl Orange Dye under Visible Irradiation: Kinetics and Isotherms Study. Environ. Res. 2022, 203, 111833. DOI: 10.1016/j.envres.2021.111833
  • Yadav, A.; Patel, R. V.; Singh, C. P.; Labhasetwar, P. K.; Shahi, V. K. Experimental Study and Numerical Optimization for Removal of Methyl Orange Using Polytetrafluoroethylene Membranes in Vacuum Membrane Distillation Process. Colloids Surf. A: Physicochem. Eng. ASP 2022, 635, 128070. DOI: 10.1016/j.colsurfa.2021.128070.
  • Darwish, A. A. A.; Rashad, M.; Al-Aoh, H. A. Methyl Orange Adsorption Comparison on Nanoparticles: Isotherm, Kinetics, and Thermodynamic Studies. Dyes Pigm. 2019, 160, 563–571. DOI: 10.1016/j.dyepig.2018.08.045.
  • Sponza, D. T. Toxicity Studies in a Chemical Dye Production Industry in Turkey. J. Hazard Mater. 2006, 138, 438–447. DOI: 10.1016/j.jhazmat.2006.05.120.
  • Ma, H.; Wang, B.; Luo, X. Studies on Degradation of Methyl Orange Wastewater by Combined Electrochemical Process. J. Hazard Mater. 2007, 149, 492–498. DOI: 10.1016/j.jhazmat.2007.04.020.
  • Paul, K. K.; Ghosh, R.; Giri, P. K. Mechanism of Strong Visible Light Photocatalysis by Ag2O-Nanoparticle-Decorated Monoclinic TiO2(B) porous Nanorods. Nanotechnology 2016, 27, 315703. DOI: 10.1088/0957-4484/27/31/315703.
  • Neethu, N.; Choudhury, T. Treatment of Methylene Blue and Methyl Orange Dyes in Wastewater by Grafted Titania Pillared Clay Membranes. Recent Pat. Nanotechnol. 2018, 12, 200–207. DOI: 10.2174/1872210512666181029155352.
  • Akama, Y.; Tong, A.; Ito, M.; Tanaka, S. The Study of the Partitioning Mechanism of Methyl Orange in an Aqueous Two-Phase System. Talanta 1999, 48, 1133–1137. DOI: 10.1016/S0039-9140(98)00331-2.
  • Mohammadi, N.; Khani, H.; Gupta, V. K.; Amereh, E.; Agarwal, S. Adsorption Process of Methyl Orange Dye onto Mesoporous Carbon Material-Kinetic and Thermodynamic Studies. J Colloid Interface Sci. 2011, 362, 457–462. DOI: 10.1016/j.jcis.2011.06.067.
  • Khairy, M.; Kamar, E. M.; Yehia, M.; Masoud, E. M. High Removal Efficiency of Methyl Orange Dye by Pure and (Cu, N) Doped TiO2/Polyaniline Nanocomposites. Biointerface. Res. Appl. Chem. 2022, 12, 893–909.
  • Jawad, A. H.; Mubarak, N. S. A.; Abdulhameed, A. S. Tunable Schiff's Base-Cross-Linked Chitosan Composite for the Removal of Reactive Red 120 Dye: Adsorption and Mechanism Study. Int. J. Biol. Macromol. 2020, 142, 732–741. DOI: 10.1016/j.ijbiomac.2019.10.014.
  • Li, Z.; Hanafy, H.; Zhang, L.; Sellaoui, L.; Netto, M. S.; Oliveira, M. L. S.; Seliem, M. K.; Dotto, G. L.; Bonilla-Petriciolet, A.; Li, Q. Adsorption of Congo Red and Methylene Blue Dyes on an Ashitaba Waste and a Walnut Shell-Based Activated Carbon from Aqueous Solutions: Experiments, Characterization and Physical Interpretations. Chem. Eng. J. 2020, 388, 124263. DOI: 10.1016/j.cej.2020.124263.
  • Peng, Y.; Azeem, M.; Li, R.; Xing, L.; Li, Y.; Zhang, Y.; Guo, Z.; Wang, Q.; Ngo, H. H.; Qu, G.; Zhang, Z. Zirconium Hydroxide Nanoparticle Encapsulated Magnetic Biochar Composite Derived from Rice Residue: Application for as (III) and as (V) polluted Water Purification. J. Hazard. Mater. 2022, 423, 127081. DOI: 10.1016/j.jhazmat.2021.127081.
  • Hashemi, Z.; Mizwari, Z. M.; Mohammadi-Aghdam, S.; Mortazavi-Derazkola, S.; Ebrahimzadeh, M. A. Sustainable Green Synthesis of Silver Nanoparticles Using Sambucus Ebulus Phenolic Extract (AgNPs@ SEE): Optimization and Assessment of Photocatalytic Degradation of Methyl Orange and Their in Vitro Antibacterial and Anticancer Activity. Arab. J. Chem. 2022, 15, 103525. DOI: 10.1016/j.arabjc.2021.103525.
  • Karapınar, H. S.; Bilgiç, A. A New Magnetic Fe3O4@ SiO2@ TiO2-APTMS-CPA Adsorbent for Simple, Fast and Effective Extraction of Aflatoxins from Some Nuts. J. Food Compost Anal. 2022, 105, 104261. DOI: 10.1016/j.jfca.2021.104261.
  • Banihashemi, A.; zare, K.; Javanbakht, V.; Mohammadifard, H. Calcium Carbonate Nanoparticles Fabricated by a Facile Method Based on the Colloidal Gas Aphrons for Removal of Fluoride Ions from Aqueous Solutions. Mater. Chem. Phys. 2021, 258, 123934. DOI: 10.1016/j.matchemphys.2020.123934.
  • Abeywardena, M. R.; Elkaduwe, R. K. W. H. M. K.; Karunarathne, D. G. G. P.; Pitawala, H. M. T. G. A.; Rajapakse, R. M. G.; Manipura, A.; Mantilaka, M. M. M. G. P. G. Surfactant Assisted Synthesis of Precipitated Calcium Carbonate Nanoparticles Using Dolomite: Effect of pH on Morphology and Particle Size. Adv. Powder Technol. 2020, 31, 269–278. DOI: 10.1016/j.apt.2019.10.018.
  • Thenepalli, T.; Jun, A. Y.; Han, C.; Ramakrishna, C.; Ahn, J. W. A Strategy of Precipitated Calcium Carbonate (CaCO3) Fillers for Enhancing the Mechanical Properties of Polypropylene Polymers. Korean J. Chem. Eng. 2015, 32, 1009–1022. DOI: 10.1007/s11814-015-0057-3.
  • Eurov, D. A.; Shvidchenko, A. V.; Kurdyukov, D. A. Electrostatic Stabilization of Hydrosols of Calcium Carbonate Nanoparticles Synthesized by the Template Method. Colloid J 2020, 82, 115–121. DOI: 10.1134/S1061933X20020040.
  • Shan, D.; Zhu, M.; Han, E.; Xue, H.; Cosnier, S. Calcium Carbonate Nanoparticles: A Host Matrix for the Construction of Highly Sensitive Amperometric Phenol Biosensor. Biosens. Bioelectron 2007, 23, 648–654. DOI: 10.1016/j.bios.2007.07.012.
  • Wang, X.; Jiang, D. Modification of Nanometer Calcium Carbonate for Water-Borne Architectural Coatings. J. China Univ. Mining Technol. 2008, 18, 76–81. DOI: 10.1016/S1006-1266(08)60017-6.
  • Sdiri, A.; Higashi, T.; Jamoussi, F.; Bouaziz, S. Effects of Impurities on the Removal of Heavy Metals by Natural Limestones in Aqueous Systems. J. Environ. Manage 2012, 93, 245–253.
  • Ahmad, K.; Bhatti, I. A.; Muneer, M.; Iqbal, M.; Iqbal, Z. Removal of Heavy Metals (Zn, Cr, Pb, Cd, Cu and Fe) in Aqueous Media by Calcium Carbonate as an Adsorbent. IJCBS 2012, 2, 48–53.
  • Kamaruddin, M. A.; Bakri, M. M. A.; Norashiddin, F. A.; Zawawi, M. H.; Zainol, M. R. R. A. Synthesis of Composite Adsorbent from Calcium Carbonate and Cocos Nucifera Carbon Powder Crosslinked with Biopolymer Matrix. IOP Conf. Ser.: Mater. Sci. Eng. 2018, 343, 012010. DOI: 10.1088/1757-899X/343/1/012010.
  • Cheng, Y.; Dong, H.; Hao, T. CaCO3 Coated Nanoscale Zero-Valent Iron (nZVI) for the Removal of Chromium(VI) in Aqueous Solution. Sep. Purif. Technol. 2021, 257, 117967. 101016/j2020DOI: 10.1016/j.seppur.2020.117967.
  • Shojaei, M.; Shokuhfar, A.; Zolriasatein, A. Synthesis and Characterization of CuAlS2 Nanoparticles by Mechanical Milling. Today Commun. Mater. 2021, 27, 102243.
  • Menazea, A. Femtosecond Laser Ablation-Assisted Synthesis of Silver Nanoparticles in Organic and Inorganic Liquids Medium and Their Antibacterial Efficiency. Radiat. Phys. Chem. 2020, 168, 108616. DOI: 10.1016/j.radphyschem.2019.108616.
  • Verma, M.; Singh, K. P.; Kumar, A. Reactive Magnetron Sputtering Based Synthesis of WO3 Nanoparticles and Their Use for the Photocatalytic Degradation of Dyes. Solid State Sci. 2020, 99, 105847. DOI: 10.1016/j.solidstatesciences.2019.02.008.
  • Odularu, A. T. Metal Nanoparticles: thermal Decomposition, Biomedicinal Applications to Cancer Treatment, and Future Perspectives. Bioinorg. Chem. Appl. 2018, 2018, 9354708. DOI: 10.1155/2018/9354708.
  • Bayca, S. U.; Altinok, H.; Akcay, A. Synthesis of Nickel Nanothorn Particles by the Hydrothermal Method. J. Dispers. Sci. Technol. 2020, 42, 10–20. DOI: 10.1080/01932691.2019.1658598.
  • Gao, S.; Hao, S.; Huang, Z.; Yuan, Y.; Han, S.; Lei, L.; Zhang, X.; Shahbazian-Yassar, R.; Lu, J. Synthesis of High-Entropy Alloy Nanoparticles on Supports by the Fast Moving Bed Pyrolysis. Nat. Commun. 2020, 11, 1–11.
  • Saeed, M.; Alshammari, Y.; Majeed, S. A.; Al-Nasrallah, E. Chemical Vapour Deposition of Graphene—Synthesis, Characterisation, and Applications: A Review. Molecules 2020, 25, 3856. DOI: 10.3390/molecules25173856.
  • Gu, D.; Qin, Y.; Wen, Y.; Qin, L.; Seo, H. J. Photochemical and Magnetic Activities of FeTiO3 Nanoparticles by Electro-Spinning Synthesis. J. Taiwan Inst. Chem. Eng. 2017, 78, 431–437. DOI: 10.1016/j.jtice.2017.04.003.
  • Gedi, S.; Alhammadi, S.; Noh, J.; Minnam Reddy, V. R.; Park, H.; Rabie, A. M.; Shim, J.-J.; Kang, D.; Kim, W. K. SnS2 Nanoparticles and Thin Film for Application as an Adsorbent and Photovoltaic Buffer. Nanomaterials 2022, 12, 282–210.3390/nano12020282. DOI: 10.3390/nano12020282.
  • Parashar, M.; Shukla, V. K.; Singh, R. Metal Oxides Nanoparticles via Sol–Gel Method: A Review on Synthesis, Characterization and Applications. J Mater Sci: Mater Electron 2020, 31, 3729–3749. DOI: 10.1007/s10854-020-02994-8.
  • Henam, S. D.; Ahmad, F.; Shah, M. A.; Parveen, S.; Wani, A. H. Microwave Synthesis of Nanoparticles and Their Antifungal Activities. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 213, 337–341.
  • Bai, X.; Li, L.; Liu, H.; Tan, L.; Liu, T.; Meng, X. Solvothermal Synthesis of ZnO Nanoparticles and anti-Infection Application in Vivo. ACS Appl. Mater. Interfaces 2015, 7, 1308–1317. DOI: 10.1021/am507532p.
  • Babou-Kammoe, R.; Hamoudi, S.; Larachi, F.; Belkacemi, K. Synthesis of CaCO3 Nanoparticles by Controlled Precipitation of Saturated Carbonate and Calcium Nitrate Aqueous Solutions. Can. J. Chem. Eng. 2012, 90, 26–33. DOI: 10.1002/cjce.20673.
  • Teir, S.; Eloneva, S.; Fogelholm, C.-J.; Zevenhoven, R. Stability of Calcium Carbonate and Magnesium Carbonate in Rainwater and Nitric Acid Solutions. Energy Convers. Manag. 2006, 47, 3059–3068. DOI: 10.1016/j.enconman.2006.03.021.
  • Cochran, E. A.; Woods, K. N.; Johnson, D. W.; Page, C. J.; Boettcher, S. W. Unique Chemistries of Metal-Nitrate Precursors to Form Metal-Oxide Thin Films from Solution: materials for Electronic and Energy Applications. J. Mater. Chem. A 2019, 7, 24124–24149. DOI: 10.1039/C9TA07727H.
  • Ghiasi, M.; Malekzadeh, A. Synthesis of CaCO3 Nanoparticles via Citrate Method and Sequential Preparation of CaO and Ca(OH)2 Nanoparticles. Cryst. Res. Technol. 2012, 47, 471–478. DOI: 10.1002/crat.201100240.
  • Mansour, S. A. A. Thermal Decomposition of Calcium Citrate Tetrahydrate. Thermochim. Acta 1994, 233, 243–256. DOI: 10.1016/0040-6031(94)85118-2.
  • Li, J.; Liu, Y.; Gao, Y.; Zhong, L.; Zou, Q.; Lai, X. Preparation and Properties of Calcium Citrate Nanosheets for Bone Graft Substitute. Bioengineered 2016, 7, 376–381. DOI: 10.1080/21655979.2016.1226656.
  • Pholnak, C.; Sirisathitkul, C.; Suwanboon, S.; Harding, D. J. Effects of Precursor Concentration and Reaction Time on Sonochemically Synthesized ZnO Nanoparticles. J. Mater. Res. 2014, 17, 411–405.
  • Taha, G.; Rashed, M.; Abd El-Sadek, M.; Moghazy, M. Comparative Study on Three Different Methods for Synthesis of a Pure Nano Multiferroic BiFeO3. J. Adv. Sci.. Engng. Med. 2017, 9, 461–468. DOI: 10.1166/asem.2017.1906.
  • Darčanova, O.; Beganskienė, A.; Kareiva, A. Sol–Gel Synthesis of Calcium Nanomaterial for Paper Conservation. CHEMIJA 2015, 26, 25–31.
  • Boyjoo, Y.; Pareek, V. K.; Liu, J. Synthesis of Micro and Nano-Sized Calcium Carbonate Particles and Their Applications. J. Mater. Chem. A 2014, 2, 14270–14288. DOI: 10.1039/C4TA02070G.
  • Naderi, M in Chapter. Fourteen - Surface Area: Brunauer–Emmett–Teller (BET), Vol. ed. S.Tarleton. Academic Press, Oxford, 2015; pp. 585–608.
  • Donatan, S.; Yashchenok, A.; Khan, N.; Parakhonskiy, B.; Cocquyt, M.; Pinchasik, B. E.; Khalenkow, D.; Mohwald, H.; Konrad, M.; Skirtach, A. Loading Capacity versus Enzyme Activity in Anisotropic and Spherical Calcium Carbonate Microparticles. ACS Appl. Mater. Interfaces 2016, 8, 14284–14292. DOI: 10.1021/acsami.6b03492.
  • Balabushevich, N. G.; Lopez de Guerenu, A. V.; Feoktistova, N. A.; Skirtach, A. G.; Volodkin, D. Protein-Containing Multilayer Capsules by Templating on Mesoporous CaCO3 Particles: POST- and PRE-Loading Approaches. Macromol. Biosci. 2016, 16, 95–105. DOI: 10.1002/mabi.201500243.
  • Vikulina, A. S.; Feoktistova, N. A.; Balabushevich, N. G.; Skirtach, A. G.; Volodkin, D. The Mechanism of Catalase Loading into Porous Vaterite CaCO3 Crystals by co-Synthesis. Phys. Chem. Chem. Phys. 2018, 20, 8822–8831. DOI: 10.1039/c7cp07836f.
  • Sargheini, J.; Ataie, A.; Salili, S. M.; Hoseinion, A. A. One-Step Facile Synthesis of CaCO3 Nanoparticles via Mechano-Chemical Route. Powder Technol. 2012, 219, 72–77. DOI: 10.1016/j.powtec.2011.12.011.
  • Sukhorukov, G. B.; Volodkin, D. V.; Günther, A. M.; Petrov, A. I.; Shenoy, D. B.; Möhwald, H. Porous Calcium Carbonate Microparticles as Templates for Encapsulation of Bioactive Compounds. J. Mater. Chem. 2004, 14, 2073–2081. DOI: 10.1039/B402617A.
  • Kirboga, S.; Öner, M. Investigation of Calcium Carbonate Precipitation in the Presence of Carboxymethyl Inulin. CrystEngComm 2013, 15, 3678–3686. DOI: 10.1039/c3ce27022j.
  • Ma, X.; Li, L.; Yang, L.; Su, C.; Wang, K.; Yuan, S.; Zhou, J. Adsorption of Heavy Metal Ions Using Hierarchical CaCO3-Maltose Meso/Macroporous Hybrid Materials: adsorption Isotherms and Kinetic Studies. J. Hazard Mater. 2012, 209-210, 467–477. DOI: 10.1016/j.jhazmat.2012.01.054.
  • Wei, S.-H.; Mahuli, S. K.; Agnihotri, R.; Fan, L.-S. High Surface Area Calcium Carbonate: Pore Structural Properties and Sulfation Characteristics. Ind. Eng. Chem. Res. 1997, 36, 2141–2148. DOI: 10.1021/ie960768l.
  • Istratie, R.; Stoia, M.; Păcurariu, C.; Locovei, C. Single and Simultaneous Adsorption of Methyl Orange and Phenol onto Magnetic Iron Oxide/Carbon Nanocomposites. Arab. J. Chem. 2016, 12, 3704–3722. DOI: 10.1016/j.arabjc.2015.12.012.
  • Zhi, S.; Wan, L.; Xu, Z. Poly(Vinylidene Fluoride)/Poly(Acrylic Acid)/Calcium Carbonate Composite Membranes via Mineralization. J. Membr. Sci. 2014, 454, 144–154. DOI: 10.1016/j.memsci.2013.12.011.
  • Fajarwati, F. I.; Yandini, N. I.; Anugrahwati, M.; Setyawati, A. Adsorption Study of Methylene Blue and Methyl Orange Using Green Shell (Perna Viridis). EKSAKTA: J. Sci. Data Anal. 2020, 20, 92–97. DOI: 10.20885/EKSAKTA.vol1.iss1.art14.
  • Asuha, S.; Gao, Y. W.; Deligeer, W.; Yu, M.; Suyala, B.; Zhao, S. Adsorptive Removal of Methyl Orange Using Mesoporous Maghemite. J. Porous Mater. 2011, 18, 581–587. DOI: 10.1007/s10934-010-9412-2.
  • Sejie, F. P.; Nadiye-Tabbiruka, M. S. Removal of Methyl Orange (MO) from Water by Adsorption onto Modified Local Clay (Kaolinite). Phys. Chem. 2016, 6, 39–48. DOI: 10.5923/j.pc.20160602.02.
  • Ruiz-Agudo, E.; Putnis, C. V.; Rodriguez-Navarro, C.; Putnis, A. Effect of pH on Calcite Growth at Constant Ratio and Supersaturation. Geochim. Cosmochim. Acta 2011, 75, 284–296. DOI: 10.1016/j.gca.2010.09.034.
  • Somasundaran, P.; Agar, G. E. The Zero Point of Charge of Calcite. J. Colloid Interface Sci. 1967, 24, 433–440. DOI: 10.1016/0021-9797(67)90241-X.
  • Bob, M.; Walker, H. W. Enhanced Adsorption of Natural Organic Matter on Calcium Carbonate Particles through Surface Charge Modification. Colloid Surface A 2001, 191, 17–25. DOI: 10.1016/S0927-7757(01)00760-9.
  • Hiorth, A.; Cathles, L. M.; Madland, M. V. The Impact of Pore Water Chemistry on Carbonate Surface Charge and Oil Wettability. Transp. Porous Med. 2010, 85, 1–21. DOI: 10.1007/s11242-010-9543-6.
  • Lin, P.; Wu, H.; Hsieh, S.; Li, J.; Dong, C.; Chen, C.; Hsieh, S. Preparation of Vaterite Calcium Carbonate Granules from Discarded Oyster Shells as an Adsorbent for Heavy Metal Ions Removal. Chemosphere 2020, 254, 126903. DOI: 10.1016/j.chemosphere.2020.126903.
  • Al-Hosney, H. A.; Grassian, V. H. Water, Sulfur Dioxide and Nitric Acid Adsorption on Calcium Carbonate: A Transmission and ATR-FTIR Study. Phys. Chem. Chem. Phys 2005, 7, 1266. DOI: 10.1039/b417872f.
  • Yutkin, M. P.; Lee, J. Y.; Mishra, H.; Radke, C. J.; Patzek, T. W. Bulk and Surface Aqueous Speciation of Calcite: Implications for Low-Salinity Waterflooding of Carbonate Reservoirs. Soc. Pet. Eng. J. 2018, 23(1), 84–101. DOI: 10.2118/182829-MS.
  • Rubasinghege, G.; Grassian, V. H. Role(s) of Adsorbed Water in the Surface Chemistry of Environmental Interfaces. Chem. Commun. (Camb.) 2013, 49, 3071–3094. DOI: 10.1039/c3cc38872g.
  • Parshetti, G. K.; Telke, A. A.; Kalyani, D. C.; Govindwar, S. P. Decolorization and Detoxification of Sulfonated Azo Dye Methyl Orange by Kocuria rosea MTCC 1532. J. Hazard Mater. 2010, 176, 503–509. DOI: 10.1016/j.jhazmat.2009.11.058.
  • Chong, K. Y.; Chia, C. H.; Zakaria, S.; Sajab, M. S. Vaterite Calcium Carbonate for the Adsorption of Congo Red from Aqueous Solutions. J. Environ. Chem. Eng. 2014, 2, 2156–2161. DOI: 10.1016/j.jece.2014.09.017.
  • Subbaiah, M. V.; Kim, D. S. Adsorption of Methyl Orange from Aqueous Solution by Aminated Pumpkin Seed Powder: Kinetics, Isotherms, and Thermodynamic Studies. Ecotoxicol. Environ. Saf. 2016, 128, 109–117. DOI: 10.1016/j.ecoenv.2016.02.016.
  • Saha, T. K.; Bhoumik, N. C.; Karmaker, S.; Ahmed, M. G.; Ichikawa, H.; Fukumori, Y. Adsorption of Methyl Orange onto Chitosan from Aqueous Solution. JWARP 2010, 02, 898–906. DOI: 10.4236/jwarp.2010.210107.
  • Hariharan, M.; Varghese, N.; Cherian, A. B.; Sreenivasan, P. V.; Paul, J. Synthesis and Characterisation of CaCO3 (Calcite) Nano Particles from Cockle Shells Using Chitosan as Precursor. Int. J. Sci. Res. 2014, 4, 1–5. DOI: 10.1.1.652.4409.
  • Mishra, S.; Chatterjee, A.; Singh, R. Novel Synthesis of Nano-Calcium Carbonate (CaCO3)/Polystyrene (PS) Core-Shell Nanoparticles by Atomized Microemulsion Technique and Its Effect on Properties of Polypropylene (PP) Composites. Polym. Adv. Technol. 2011, 22, 2571–2582. DOI: 10.1002/pat.1802.
  • Mall, I. D.; Srivastava, V. C.; Agarwal, N. K. Removal of Orange-G and Methyl Violet Dyes by Adsorption onto Bagasse Fly Ash—Kinetic Study and Equilibrium Isotherm Analyses. Dyes Pigm. 2006, 69, 210–223. DOI: 10.1016/j.dyepig.2005.03.013.
  • Gupta, V. K.; Pathania, D.; Sharma, S.; Agarwal, S.; Singh, P. Remediation and Recovery of Methyl Orange from Aqueous Solution onto Acrylic Acid Grafted Ficus carica Fiber: Isotherms, Kinetics and Thermodynamics. J. Mol. Liq. 2013, 177, 325–334. DOI: 10.1016/j.molliq.2012.10.007.
  • Alzaydien, A. S. Adsorption Behavior of Methyl Orange onto Wheat Bran: Role of Surface and pH. Orient. J. Chem. 2015, 31, 643–651. DOI: 10.13005/ojc/310205.
  • Foroutan, R.; Mohammadi, R.; Ramavandi, B.; Bastanian, M. Removal Characteristics of Chromium by Activated Carbon/CoFe2O4 Magnetic Composite and Phoenix Dactylifera Stone Carbon. Korean J. Chem. Eng. 2018, 35, 2207–2219. DOI: 10.1007/s11814-018-0145-2.
  • Zhang, M.; Yu, Z.; Yu, H. Adsorption of Eosin Y, Methyl Orange and Brilliant Green from Aqueous Solution Using Ferroferric Oxide/Polypyrrole Magnetic Composite. Polym. Bull. 2020, 77, 1049–1066. DOI: 10.1007/s00289-019-02792-1.
  • Sriram, G.; Bendre, A.; Altalhi, T.; Jung, H.-Y.; Hegde, G.; Kurkuri, M. Surface Engineering of Silica Based Materials with Ni-Fe Layered Double Hydroxide for the Efficient Removal of Methyl Orange: Isotherms, Kinetics, Mechanism and High Selectivity Studies. Chemosphere 2022, 287, 131976. DOI: 10.1016/j.chemosphere.2021.131976.
  • Zhang, H.; Li, R.; Zhang, Z. A Versatile EDTA and Chitosan bi-Functionalized Magnetic Bamboo Biochar for Simultaneous Removal of Methyl Orange and Heavy Metals from Complex Wastewater. Environ. Pollut. 2022, 293, 118517. 293
  • Shah, M. R.; Lima, E. C.; Hamid, A.; Nazir, R.; Zawar, M. Rapid Defluoridation of Drinking Water by Calcium Carbonate Nanoadsorbent: Characterization, Adsorption Studies and Application to Real Samples’ Treatment. Water Supply 2020, 20, 667–678. DOI: 10.2166/ws.2019.196.
  • Elkhatib, E.; Moharem, M.; Mahmoud, A. Low Cost Nanoparticles Derived from Nitrogen Fertilizer Industry Waste for the Remediation of Copper Contaminated Soil and Water. Environ. Eng. Res. 2020, 25, 930–937. DOI: 10.4491/eer.2018.438.
  • Jiang, Y.; Liu, B.; Xu, J.; Pan, K.; Hou, H.; Hu, J.; Yang, J. Cross-linked chitosan/β-cyclodextrin composite for selective removal of methyl orange: Adsorption performance and mechanism . Carbohydr. Polym. 2018, 182, 106–114. DOI: 10.1016/j.carbpol.2017.10.097.
  • Lagergren, S. About the Theory of so-Called Adsorption of Solution Substances. Handlinge 1898, 24, 147–156.
  • Ho, Y. S. Review of Second-Order Models for Adsorption Systems. J. Hazard Mater. 2006, 136, 681–689. DOI: 10.1016/j.jhazmat.2005.12.043.
  • Ho, Y.; Mckay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem. 1999, 34, 451–465. DOI: 10.1016/S0032-9592(98)00112-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.