269
Views
3
CrossRef citations to date
0
Altmetric
Articles

Fabrication, characterization, and application of Pickering emulsion stabilized by tea (Camellia sinensis (L.) O. Kuntze) waste microcrystalline cellulose

, , , , & ORCID Icon
Pages 2150-2160 | Received 21 Oct 2021, Accepted 02 Apr 2022, Published online: 24 Apr 2022

References

  • National Bureau of Statistics of China, Statistical communiqué of the People's Republic of China on the 2020 national economic and social development. http://www.stats.gov.cn/tjsj/zxfb/202102/t20210227_1814154.html. 2021 (accessed March 2, 2021).
  • Gao, P.; Ogata, Y. CHAMU: An Effective Approach for Improving the Recycling of Tea Waste. IOP Conf. Ser. Mater. Sci. Eng. 2020, 711, 12024.
  • Duan, J.; Obi, R. K.; Ashok, B.; Cai, J.; Zhang, L.; Rajulu, A. V. Effects of Spent Tea Leaf Powder on the Properties and Functions of Cellulose Green Composite Films. J. Environ. Chem. Eng. 2016, 4, 440–448. DOI: 10.1016/j.jece.2015.11.029.
  • Ahmed, S. T.; Lee, J. W.; Mun, H. S.; Yang, C. J. Effects of Supplementation with Green Tea by‐Products on Growth Performance, Meat Quality, Blood Metabolites and Immune Cell Proliferation in Goats. J. Anim. Physiol. Anim. Nutr. 2015, 99, 1127–1137. DOI: 10.1111/jpn.12279.
  • Farouk, S. M.; Gad, F. A.; Almeer, R.; Abdel-Daim, M. M.; Emam, M. A. Exploring the Possible Neuroprotective and Antioxidant Potency of Lycopene against Acrylamide-Induced Neurotoxicity in Rats' Brain. Biomed. Pharmacother. 2021, 138, 111458.
  • Moreto, F.; Ferron, A. J. T.; Francisqueti, F. V.; Garcia, J. L.; Kitawara, K. A. H.; Correa-Camacho, C. R.; Anjos, F. A. L. D. 222 - Lycopene Shows anti-Protein Carbonylation and anti-Inflammatory Properties in Liver of Rats Treated with a Hypercaloric Refined-Carbohydrate Rich Diet. Free Radical Bio. Med. 2017, 112, 153–154. DOI: 10.1016/j.freeradbiomed.2017.10.235.
  • Cui, L.; Xu, F.; Wu, K.; Li, L.; Qiao, T.; Li, Z.; Chen, T.; Sun, C. Anticancer Effects and Possible Mechanisms of Lycopene Intervention on N-Methylbenzylnitrosamine Induced Esophageal Cancer in F344 Rats Based on PPARγ1. Eur. J. Pharmacol. 2020, 881, 173230. DOI: 10.1016/j.ejphar.2020.173230.
  • Rein, M. J.; Renouf, M.; Cruz-Hernandez, C.; Actis-Goretta, L.; Thakkar, S. K.; Da, S. P. M. Bioavailability of Bioactive Food Compounds: A Challenging Journey to Bioefficacy. Br. J. Clin. Pharmacol. 2013, 75, 588–602. DOI: 10.1111/j.1365-2125.2012.04425.x.
  • Kalashnikova, I.; Bizot, H.; Cathala, B.; Capron, I. Capron, I. New Pickering Emulsions Stabilized by Bacterial Cellulose Nanocrystals. Langmuir 2011, 27, 7471–7479.
  • Arrieta-Escobar, J.; Bernardo, F.; Orjuela, A.; Camargo, M.; Morel, L. Incorporation of Heuristic Knowledge in the Optimal Design of Formulated Products: Application to a Cosmetic Emulsion. Comput. Chem. Eng. 2019, 122, 265–274. DOI: 10.1016/j.compchemeng.2018.08.032.
  • Niroula, A.; Gamot, T. D.; Ooi, C. W.; Dhital, S. Biomolecule-Based Pickering Food Emulsions: Intrinsic Components of Food Matrix, Recent Trends and Prospects. Food Hydrocoll. 2021, 112, 106303. DOI: 10.1016/j.foodhyd.2020.106303.
  • Gupta, R.; Rousseau, D. Surface-Active Solid Lipid Nanoparticles as Pickering Stabilizers for Oil-in-Water Emulsions. Food Funct. 2012, 3, 302–311.
  • Kim, G.; Cho, S.; Kim, S.; Oh, M.; Han, J.; Park, S.; Seo, B.; An, S. 147 Comparison of in Vivo and in Vitro Tests to Predict the Irritation Potential of Surfactants and Cleansing Formulation. J. Invest. Dermatol. 2019, 139, S239. DOI: 10.1016/j.jid.2019.07.151.
  • Khan, M. S.; Bhat, S. A.; Rehman, M. T.; Hassan, I.; Tabrez, S.; AlAjmi, M. F.; Hussain, A.; Husain, F. M.; Alamery, S. F. Rutin Attenuates Negatively Charged Surfactant (SDS)-Induced Lysozyme Aggregation/Amyloid Formation and Its Cytotoxicity. Int. J. Biol. Macromol. 2018, 120, 45–58.
  • Lechuga, M.; Fernandez-Serrano, M.; Jurado, E.; Nunez-Olea, J.; Rios, F. Acute Toxicity of Anionic and Non-Ionic Surfactants to Aquatic Organisms. Ecotoxicol. Environ. Saf. 2016, 125, 1–8.
  • Pickering, S. CXCVI.-Emulsions. J. Chem. Soc. Trans. 1907, 91, 2001–2021. DOI: 10.1039/CT9079102001.
  • Li, S.; Li, C.; Yang, Y.; He, X.; Zhang, B.; Fu, X.; Tan, C. P.; Huang, Q. Starch Granules as Pickering Emulsifiers: Role of Octenylsuccinylation and Particle Size. Food Chem. 2019, 283, 437–444.
  • Shi, A.; Feng, X.; Wang, Q.; Adhikari, B. Pickering and High Internal Phase Pickering Emulsions Stabilized by Protein-Based Particles: A Review of Synthesis, Application and Prospective. Food Hydrocoll. 2020, 109, 106117. DOI: 10.1016/j.foodhyd.2020.106117.
  • Pawlik, A.; Kurukji, D.; Norton, I.; Spyropoulos, F. Food-Grade Pickering Emulsions Stabilised with Solid Lipid Particles. Food Funct. 2016, 7, 2712–2721.
  • Trache, D.; Hussin, M. H.; Hui, C. C.; Sabar, S.; Fazita, M. R.; Taiwo, O. F.; Hassan, T. M.; Haafiz, M. K. Microcrystalline Cellulose: Isolation, Characterization and Bio-Composites application-A Review. Int J Biol Macromol 2016, 93, 789–804.
  • Saffarionpour, S.; Diosady, L. L. Curcumin, a Potent Therapeutic Nutraceutical and Its Enhanced Delivery and Bioaccessibility by Pickering Emulsions. Drug Deliv. Transl. Re. 2021, 8, 1–34.
  • Nsor-Atindana, J.; Chen, M.; Goff, H. D.; Zhong, F.; Sharif, H. R.; Li, Y. Functionality and Nutritional Aspects of Microcrystalline Cellulose in Food. Carbohyd. Polym. 2017, 172, 159–174. DOI: 10.1016/j.carbpol.2017.04.021.
  • Haldar, D.; Purkait, M. K. Micro and Nanocrystalline Cellulose Derivatives of Lignocellulosic Biomass: A Review on Synthesis, Applications and Advancements. Carbohyd. Polym. 2020, 250, 116937. DOI: 10.1016/j.carbpol.2020.116937.
  • The United States Pharmacopeial Convention. Food chemicals codex, 9th ed. Rockville: MD, 2014, 268–269.
  • Lu, H.; Gui, Y.; Guo, T.; Wang, Q.; Liu, X. Effect of the Particle Size of Cellulose from Sweet Potato Residues on Lipid Metabolism and Cecal Conditions in Ovariectomized Rats. Food Funct. 2015, 6, 1185–1193.
  • Wang, B.; Zhang, Q.; Zhang, N.; Bak, K. H.; Soladoye, O. P.; Aluko, R. E.; Fu, Y.; Zhang, Y. Insights into Formation, Detection and Removal of the Beany Flavor in Soybean Protein. Trends Food Sci. Tech. 2021, 112, 336–347. DOI: 10.1016/j.tifs.2021.04.018.
  • Zhao, T.; Chen, Z.; Lin, X.; Ren, Z.; Li, B.; Zhang, Y. Preparation and Characterization of Microcrystalline Cellulose (MCC) from Tea Waste. Carbohyd. Polym. 2018, 184, 164–170. DOI: 10.1016/j.carbpol.2017.12.024.
  • Zhou, Y.; Sun, S.; Bei, W.; Zahi, M. R.; Yuan, Q.; Liang, H. Preparation and Antimicrobial Activity of Oregano Essential Oil Pickering Emulsion Stabilized by Cellulose Nanocrystals. Int. J. Biol. Macromol. 2018, 112, 7–13.
  • Jiang, Y.; Zhang, C.; Yuan, J.; Wu, Y.; Li, F.; I. N. Waterhouse, G.; Li, D.; Huang, Q. Exploiting the Robust Network Structure of Zein/Low-Acyl Gellan Gum Nanocomplexes to Create Pickering Emulsion Gels with Favorable Properties. Food Chem. 2021, 349, 129112.
  • Tzoumaki, M. V.; Moschakis, T.; Kiosseoglou, V.; Biliaderis, C. G. Oil-in-Water Emulsions Stabilized by Chitin Nanocrystal Particles. Food Hydrocoll. 2011, 25, 1521–1529. DOI: 10.1016/j.foodhyd.2011.02.008.
  • Ren, Z.; Chen, Z.; Zhang, Y.; Lin, X.; Weng, W.; Liu, G.; Li, B. Characteristics of Pickering Emulsions Stabilized by Tea Water-Insoluble Protein Nanoparticles at Different pH Values. Food Chem. 2022, 375, 131795. DOI: 10.1016/j.foodchem.2021.131795.
  • Liu, Y.; Chen, Y.; Liu, H.; Gao, Y. Modification of Microcrystalline Cellulose Enhanced by Impact Milling and Solvothermal Process and Its Pickering Emulsion. Colloids Interface Sci. Commun. 2021, 44, 100487. DOI: 10.1016/j.colcom.2021.100487.
  • Zhang, Y.; Lu, Y.; Zhang, R.; Gao, Y.; Mao, L. Novel High Internal Phase Emulsions with Gelled Oil Phase: Preparation, Characterization and Stability Evaluation. Food Hydrocoll. 2021, 121, 106995. DOI: 10.1016/j.foodhyd.2021.106995.
  • Maryam, K.; Khorshid, F.; Mina, A.; Fotios, S.; Ian, T. N. Investigation into the Potential Ability of Pickering Emulsions (Food-Grade Particles) to Enhance the Oxidative Stability of Oil-in-Water Emulsions. J. Colloid Interf. Sci. 2012, 366, 209–215.
  • Li, Z.; Wu, H.; Yang, M.; Xu, D.; Chen, J.; Feng, H.; Lu, Y.; Zhang, L.; Yu, Y.; Kang, W. Stability Mechanism of O/W Pickering Emulsions Stabilized with Regenerated Cellulose. Carbohyd. Polym. 2018, 181, 224–233. DOI: 10.1016/j.carbpol.2017.10.080.
  • Mikulcová, V.; Bordes, R.; Kašpárková, V. On the Preparation and Antibacterial Activity of Emulsions Stabilized with Nanocellulose Particles. Food Hydrocoll. 2016, 61, 780–792. DOI: 10.1016/j.foodhyd.2016.06.031.
  • Mekhloufi, G.; Huang, N. Agnely, F. β-Lactoglobulin Stabilized nanemulsions-Formulation and Process Factors Affecting Droplet Size and Nanoemulsion Stability. Int. J. Pharmaceut. 2016, 500, 291–304.
  • Fu, D.; Deng, S.; McClements, D.; Zhou, L.; Zou, L.; Yi, J.; Liu, C.; Liu, W. Encapsulation of β-Carotene in Wheat Gluten Nanoparticle-Xanthan Gum-Stabilized Pickering Emulsions: Enhancement of Carotenoid Stability and Bioaccessibility. Food Hydrocoll. 2019, 89, 80–89. DOI: 10.1016/j.foodhyd.2018.10.032.
  • Du, L.; Loveday, H.; Singh, S. M.; Sarkar, H. A. Pickering Emulsions Stabilised by Hydrophobically Modified Cellulose Nanocrystals: Responsiveness to pH and Ionic Strength. Food Hydrocoll. 2020, 99, 105344.
  • Wei, Y.; Tong, Z.; Dai, L.; Wang, D.; Lv, P.; Liu, J.; Mao, L.; Yuan, F.; Gao, Y. Influence of Interfacial Compositions on the Microstructure, Physiochemical Stability, Lipid Digestion and β-Carotene Bioaccessibility of Pickering Emulsions. Food Hydrocoll. 2020, 104, 105738. DOI: 10.1016/j.foodhyd.2020.105738.
  • Dai, L.; Yang, S.; Wei, Y.; Sun, C.; McClements, D. J.; Mao, L.; Gao, Y. Development of Stable High Internal Phase Emulsions by Pickering Stabilization: Utilization of Zein-Propylene Glycol Alginate-Rhamnolipid Complex Particles as Colloidal Emulsifiers. Food Chem. 2019, 275, 246–254.
  • Tan, Y.; Deng, X.; Liu, T.; Yang, B.; Zhao, M.; Zhao, Q. Influence of NaCl on the Oil/Water Interfacial and Emulsifying Properties of Walnut Protein-Xanthan Gum. Food Hydrocoll. 2017, 72, 73–80. DOI: 10.1016/j.foodhyd.2017.05.031.
  • Bao, C.; Chen, X.; Liu, C.; Liao, Y.; Huang, Y.; Hao, L.; Yan, H.; Lin, Q. Extraction of Cellulose Nanocrystals from Microcrystalline Cellulose for the Stabilization of Cetyltrimethylammonium Bromide-Enhanced Pickering Emulsions. Colloids Surf. A 2021, 608, 125442. DOI: 10.1016/j.colsurfa.2020.125442.
  • Qi, J.; Song, L.; Zeng, W.; Liao, J. Citrus Fiber for the Stabilization of O/W Emulsion through Combination of Pickering Effect and Fiber-Based Network. Food Chem. 2021, 343, 128523. DOI: 10.1016/j.foodchem.2020.128523.
  • Li, R.; Peng, S.; Zhang, R.; Dai, T.; Fu, G.; Wan, Y.; Liu, C.; McClements, D. J. Formation and Characterization of Oil-in-Water Emulsions Stabilized by Polyphenol-Polysaccharide Complexes: Tannic Acid and β-Glucan. Food Res Int. 2019, 123, 266–275.
  • Souza, A. G.; Ferreira, R. R.; Paula, L. C.; Setz, L. F. G.; Rosa, D. S. The Effect of Essential Oil Chemical Structures on Pickering Emulsion Stabilized with Cellulose Nanofibrils. J. Mol. Liq. 2020, 320, 114458. DOI: 10.1016/j.molliq.2020.114458.
  • Zhu, Y.; Chen, X.; McClements, D. J.; Zou, L.; Liu, W. Pickering-Stabilized Emulsion Gels Fabricated from Wheat Protein Nanoparticles: Effect of pH, NaCl and Oil Content. J. Dispers. Sci. Technol. 2018, 39, 826–835. DOI: 10.1080/01932691.2017.1398660.
  • Wei, Z.; Zhang, H.; Huang, Q. Curcumin-Loaded Pickering Emulsion Stabilized by Insoluble Complexes Involving Ovotransferrin-Gallic Acid Conjugate and Carboxymethyldextran. Food Funct. 2019, 10, 4911–4923. DOI: 10.1039/C9FO01162E.
  • Zhao, C.; Wei, L.; Yin, B.; Liu, F.; Li, J.; Liu, X.; Wang, J.; Wang, Y. Encapsulation of Lycopene within Oil-in-Water Nanoemulsions Using Lactoferrin: Impact of Carrier Oils on Physicochemical Stability and Bioaccessibility. Int. J. Biol. Macromol. 2020, 153, 912–920.
  • Lv, P.; Wang, D.; Liang, R.; Liu, J.; Li, J.; Gao, Y.; Zhang, J.; Yuan, F. Lycopene-Loaded Bilayer Emulsions Stabilized by Whey Protein Isolate and Chitosan. LWT Food Sci. Technol. 2021, 151, 112122. DOI: 10.1016/j.lwt.2021.112122.
  • Jiang, Y.; Gao, L.; Zhong, G.; Fan, Y. Fabrication of High Internal Phase Pickering Emulsions with Calcium-Crosslinked Whey Protein Nanoparticles for β-Carotene Stabilization and Delivery. Food Funct. 2020, 11, 768–778.
  • Wei, Y.; Wang, C.; Liu, X.; Mackie, A.; Zhang, M.; Dai, L.; Liu, J.; Mao, L.; Yuan, F.; Gao, Y. Co-Encapsulation of Curcumin and β-Carotene in Pickering Emulsions Stabilized by Complex Nanoparticles: Effects of Microfluidization and Thermal Treatment. Food Hydrocoll. 2022, 122, 107064. DOI: 10.1016/j.foodhyd.2021.107064.
  • Huang, M.; Wang, Y.; Ahmad, M.; Ying, R.; Wang, Y.; Tan, C. Fabrication of Pickering High Internal Phase Emulsions Stabilized by Pecan Protein/Xanthan Gum for Enhanced Stability and Bioaccessibility of Quercetin. Food Chem. 2021, 357, 129732.
  • Ahsan, H. M.; Zhang, X.; Li, Y.; Li, B.; Liu, S. Surface Modification of Microcrystalline Cellulose: Physicochemical Characterization and Applications in the Stabilization of Pickering Emulsions. Int. J. Biol. Macromol. 2019, 132, 1176–1184. DOI: 10.1016/j.ijbiomac.2019.04.051.
  • Ren, Z.; Chen, Z.; Zhang, Y.; Lin, X.; Li, B. Characteristics and Rheological Behavior of Pickering Emulsions Stabilized by Tea Water-Insoluble Protein Nanoparticles via High-Pressure Homogenization. Int. J. Biol. Macromol. 2020, 151, 247–256.
  • Xiao, J.; Wang, X.; Perez, G. A. J.; Huang, Q. Kafirin Nanoparticles-Stabilized Pickering Emulsions: Microstructure and Rheological Behavior. Food Hydrocoll. 2016, 54, 30–39. DOI: 10.1016/j.foodhyd.2015.09.008.
  • The United States Pharmacopeial Convention. United States Pharmacopoeia: General chapter 711 Dissolution, 2015. http://www.usp.org/ (accessed Sept 21, 2021).
  • Thunnalin, W.; Manop, S. Properties and Stability of Oil-in-Water Emulsions Stabilized by Microfibrillated Cellulose from Mangosteen Rind. Food Hydrocoll. 2015, 43, 690–699.
  • Li, Q.; Xie, B.; Wang, Y.; Wang, Y.; Peng, L.; Li, Y.; Li, B.; Liu, S. Cellulose Nanofibrils from Miscanthus floridulus Straw as Green Particle Emulsifier for O/W Pickering Emulsion. Food Hydrocoll. 2019, 97, 105214. DOI: 10.1016/j.foodhyd.2019.105214.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.