212
Views
16
CrossRef citations to date
0
Altmetric
Research Articles

Fabrication of MgFe2O4/polyaniline nanocomposite for amputation of methyl red dye from water: Isotherm modeling, kinetic and cost analysis

& ORCID Icon
Pages 2587-2598 | Received 09 Mar 2022, Accepted 29 Jul 2022, Published online: 12 Aug 2022

References

  • Zaheer, Z.; Aisha, A. A.; Aazam, E. S. Adsorption of Methyl Red on Biogenic Ag@Fe Nanocomposite Adsorbent: Isotherms, Kinetics and Mechanisms. J. Mol. Liq. 2019, 283, 287–298. DOI: 10.1016/j.molliq.2019.03.030.
  • Lafi, R.; Abdellaoui, L.; Montasser, I.; Mabrouk, W.; Hafiane, A. The Effect of Head Group of Surfactant on the Adsorption of Methyl Red onto Modified Coffee Residues. J. Mol.Struct. 2022, 1249, 131527. DOI: 10.1016/j.molstruc.2021.131527.
  • Ahmad, M. A.; Ahmed, N. A. B.; Adegoke, K. A.; Bello, O. S. Sorption Studies of Methyl Red Dye Removal Using Lemon Grass (Cymbopogon Citratus). Chem. Data Collect. 2019, 22, 100249. DOI: 10.1016/j.cdc.2019.100249.
  • Dadfarnia, S.; Shabani, A. H.; Moradi, S. E.; Emami, S. Methyl Red Removal from Water by Iron Based Metal-Organic Frameworks Loaded onto Iron Oxide Nanoparticle Adsorbent. Appl. Surf. Sci. 2015, 330, 85–93. DOI: 10.1016/j.apsusc.2014.12.196.
  • Habiba, U.; Siddique, T. A.; Joo, T. C.; Salleh, A.; Ang, B. C.; Afifi, A. M. Synthesis of Chitosan/Polyvinyl Alcohol/Zeolite Composite for Removal of Methyl Orange, Congo Red and Chromium (VI) by Flocculation/Adsorption. Carbohydr. Polym. 2017, 157, 1568–1576.
  • Khan, E. A.; Khan, T. A. Adsorption of Methyl Red on Activated Carbon Derived from Custard Apple (Annona Squamosa) Fruit Shell: equilibrium Isotherm and Kinetic Studies. J. Mol. Liq. 2018, 249, 1195–1211. DOI: 10.1016/j.molliq.2017.11.125.
  • Lin, J.; Lai, Q.; Liu, Y.; Chen, S.; Le, X.; Zhou, X. Laccase–Methacrylyol Functionalized Magnetic Particles: highly Immobilized, Reusable, and Efficacious for Methyl Red Decolourization. Int. J. Biol. Macromol. 2017, 102, 144–152.
  • Ghanbarian, M.; Ghanbarian, M.; Mahvi, A. H.; Tabatabaie, T. Enhanced Fluoride Removal over MgFe2O4–Chitosan–CaAl Nanohybrid: Response Surface Optimization, Kinetic and Isotherm Study. Int. J. Biol. Macromol. 2020, 148, 574–590.
  • Deb, A.; Kanmani, M.; Debnath, A.; Bhowmik, K. L.; Saha, B. Preparation and Characterization of Magnetic CaFe2O4 Nanoparticles for Efficient Adsorption of Toxic Congo Red Dye from Aqueous Solution: predictive Modeling by Artificial Neural Network. Desalin. Water Treat. 2017, 89, 197–209.
  • Liu, X.; Zhang, Z.; Shi, W.; Zhang, Y.; An, S.; Zhang, L. Adsorbing Properties of Magnetic Nanoparticles Mn-Ferrites on Removal of Congo Red from Aqueous Solution. J. Dispersion Sci. Technol. 2015, 36, 462–470. DOI: 10.1080/01932691.2014.896745.
  • Ghaemi, M.; Absalan, G.; Sheikhian, L. Adsorption Characteristics of Titan Yellow and Congo Red on CoFe2O4 Magnetic Nanoparticles. J. Iran Chem. Soc. 2014, 11, 1759–1766. DOI: 10.1007/s13738-014-0448-0.
  • Ivanets, A.; Roshchina, M.; Srivastava, V.; Prozorovich, V.; Dontsova, T.; Nahirniak, S.; Pankov, V.; Hosseini-Bandegharaei, A.; Nguyen Tran, H.; Sillanpää, M. Effect of Metal Ions Adsorption on the Efficiency of Methylene Blue Degradation onto MgFe2O4 as Fenton-like Catalysts. Colloids Surf. A: Physicochem. Eng. Asp. 2019, 571, 17–26. DOI: 10.1016/j.colsurfa.2019.03.071.
  • Joulaei, M.; Hedayati, K.; Ghanbari, D. Investigation of Magnetic, Mechanical and Flame Retardant Properties of Polymeric Nanocomposites: Green Synthesis of MgFe2O4 by Lime and Orange Extracts. Compos. Part B: Eng. 2019, 176, 107345. DOI: 10.1016/j.compositesb.2019.107345.
  • Majumdar, S.; Baishya, A.; Mahanta, D. Kinetic and Equilibrium Modeling of Anionic Dye Adsorption on Polyaniline Emeraldine Salt: batch and Fixed Bed Column Studies. Fibers Polym. 2019, 20, 1226–1235. DOI: 10.1007/s12221-019-8355-8.
  • Amer, W. A.; Omran, M. M.; Rehab, A. F.; Ayad, M. M. Acid Green Crystal-Based in Situ Synthesis of Polyaniline Hollow Nanotubes for the Adsorption of Anionic and Cationic Dyes. RSC Adv. 2018, 8, 22536–22545.
  • Karri, R. R.; Tanzifi, M.; Yaraki, M. T.; Sahu, J. N. Optimization and Modeling of Methyl Orange Adsorption onto Polyaniline Nano-Adsorbent through Response Surface Methodology and Differential Evolution Embedded Neural Network. J. Environ. Manage. 2018, 223, 517–529.
  • Tanzifi, M.; Hosseini, S. H.; Kiadehi, A. D.; Olazar, M.; Karimipour, K.; Rezaiemehr, R.; Ali, I. Artificial Neural Network Optimization for Methyl Orange Adsorption onto Polyaniline Nano-Adsorbent: Kinetic, Isotherm and Thermodynamic Studies. J. Mol. Liq. 2017, 244, 189–200. DOI: 10.1016/j.molliq.2017.08.122.
  • Srivastava, V.; Sharma, Y. C.; Sillanpaa, M. Application of Nano-Magnesso Ferrite (n-MgFe2O4) for the Removal of Co2+ Ions from Synthetic Wastewater: kinetic, Equilibrium and Thermodynamic Studies. Appl. Surf. Sci. 2015, 338, 42–54. DOI: 10.1016/j.apsusc.2015.02.072.
  • Das, P.; Debnath, A.; Saha, B. Ultrasound‐Assisted Enhanced and Rapid Uptake of Anionic Dyes from the Binary System onto MnFe2O4/Polyaniline Nanocomposite at Neutral pH. Appl. Organomet. Chem. 2020, 34, e5711.
  • Sahoo, S. K.; Hota, G. Surface Functionalization of GO with MgO/MgFe2O4 Binary Oxides: A Novel Magnetic Nanoadsorbent for Removal of Fluoride Ions. J. Environ. Chem. Eng. 2018, 6, 2918–2931. DOI: 10.1016/j.jece.2018.04.054.
  • Mukhopadhyay, A.; Tripathy, B. K.; Debnath, A.; Kumar, M. Enhanced Persulfate Activated Sono-Catalytic Degradation of Brilliant Green Dye by Magnetic CaFe2O4 Nanoparticles: Degradation Pathway Study, Assessment of Bio-Toxicity and Cost Analysis. Surf. Interfaces 2021, 26, 101412. DOI: 10.1016/j.surfin.2021.101412.
  • Bose, S.; Tripathy, B. K.; Debnath, A.; Kumar, M. Boosted Sono-Oxidative Catalytic Degradation of Brilliant Green Dye by Magnetic MgFe2O4 Catalyst: Degradation Mechanism, Assessment of Bio-Toxicity and Cost Analysis. Ultrason. Sonochem. 2021, 75, 105592.
  • Kiani, a.; Nabiyouni, G.; Masoumi, S.; Ghanbari, D. A Novel Magnetic MgFe2O4–MgTiO3 Perovskite Nanocomposite: rapid Photo-Degradation of Toxic Dyes under Visible Irradiation. Composites Part B: Engineering 2019, 175, 107080.
  • Kaur, J.; Kaur, M. Facile Fabrication of Ternary Nanocomposite of MgFe2O4 TiO2@GO for Synergistic Adsorption and Photocatalytic Degradation Studies. Ceram. Int. 2019, 45, 8646–8659. DOI: 10.1016/j.ceramint.2019.01.185.
  • Sharma, L.; Kakkar, R. Magnetically Retrievable One-Pot Fabrication of Mesoporous Magnesium Ferrite (MgFe2O4) for the Remediation of Chlorpyrifos and Real Pesticide Wastewater. J. Environ. Chem. Eng. 2018, 6, 6891–6903. DOI: 10.1016/j.jece.2018.10.058.
  • Das, P.; Debnath, P.; Debnath, A. Enhanced Sono-Assisted Adsorptive Uptake of Malachite Green Dye onto Magnesium Ferrite Nanoparticles: kinetic, Isotherm and Cost Analysis. Environ. Nanotechnol. Monit. Manage. 2021, 16, 100506.
  • Mozaffari, M.; Emami, M. R. S.; Binaeian, E. A Novel Thiosemicarbazide Modified Chitosan (TSFCS) for Efficiency Removal of Pb (II) and Methyl Red from Aqueous Solution. Int. J. Biol. Macromol. 2019, 123, 457–467. DOI: 10.1016/j.ijbiomac.2018.11.106.
  • Munagapati, V. S.; Kim, D. S. Equilibrium Isotherms, Kinetics, and Thermodynamics Studies for Congo Red Adsorption Using Calcium Alginate Beads Impregnated with Nano-Goethite. Ecotoxicol. Environ. Saf. 2017, 141, 226–234.
  • Yakout, S. M.; Hassan, M. R.; Aly, M. I. Synthesis of Magnetic Alginate Beads Based on Magnesium Ferrite (MgFe2O4) Nanoparticles for Removal of Sr (II) from Aqueous Solution: kinetic, Equilibrium and Thermodynamic Studies. Water Sci. Technol. 2018, 77, 2714–2722.
  • Wang, J.; Guo, X. Adsorption Isotherm Models: Classification, Physical Meaning, Application and Solving Method. Chemosphere 2020, 258, 127279.
  • Ghorbani, F.; Kamari, S. Core–Shell Magnetic Nanocomposite of Fe3O4@SiO2@NH2 as an Efficient and Highly Recyclable Adsorbent of Methyl Red Dye from Aqueous Environments. Environ. Technol. Innov. 2019, 14, 100333. DOI: 10.1016/j.eti.2019.100333.
  • Guyo, U.; Matewere, N.; Matina, K.; Nharingo, T.; Moyo, M. Fabrication of a Sustainable Maize Stover-Graft-Methyl Methacrylate Biopolymer for Remediation of Methyl Red Contaminated Wasters. Sustainable Mater.Technol. 2017, 13, 9–17. DOI: 10.1016/j.susmat.2017.05.001.
  • Rajoriya, S.; Saharan, V. K.; Pundir, A. S.; Nigam, M.; Roy, K. Adsorption of Methyl Red Dye from Aqueous Solution onto Eggshell Waste Material: Kinetics, Isotherms and Thermodynamic Studies. Curr. Res. Green Sustainable Chem. 2021, 4, 100180. DOI: 10.1016/j.crgsc.2021.100180.
  • Ghaedi, M.; Kokhdan, S. N. Oxidized Multiwalled Carbon Nanotubes for the Removal of Methyl Red (MR): Kinetics and Equilibrium Study. Desalin. Water Treat. 2012, 49, 317–325. DOI: 10.1080/19443994.2012.719355.
  • Wang, L.; Wang, J.; Yan, W.; He, C.; Shi, Y. MgFe2O4-Biochar Based Lanthanum Alginate Beads for Advanced Phosphate Removal. Chem. Eng. J. 2020, 387, 123305. DOI: 10.1016/j.cej.2019.123305.
  • Batra, S.; Datta, D.; Beesabathuni, N. S.; Kanjolia, N.; Saha, S. Adsorption of Bisphenol-A from Aqueous Solution Using Amberlite XAD-7 Impregnated with Aliquat 336: Batch, Column, and Design Studies. Process Saf. Environ. Prot. 2019, 122, 232–246. DOI: 10.1016/j.psep.2018.12.005.
  • Deb, A.; Kanmani, M.; Debnath, A.; Bhowmik, K. L.; Saha, B. Ultrasonic Assisted Enhanced Adsorption of Methyl Orange Dye onto Polyaniline Impregnated Zinc Oxide Nanoparticles: kinetic, Isotherm and Optimization of Process Parameters. Ultrason. Sonochem. 2019, 54, 290–301.
  • Rachna, K.; Agarwal, A.; Singh, N. B. Preparation and Characterization of Zinc ferrite-Polyaniline Nanocomposite for Removal of Rhodamine B Dye from Aqueous Solution. Environ. Nanotechnol. Monit. Manage. 2018, 9, 154–163.
  • Mahto, T. K.; Chandra, S.; Haldar, C.; Sahu, S. K. Kinetic and Thermodynamic Study of Polyaniline Functionalized Magnetic Mesoporous Silica for Magnetic Field Guided Dye Adsorption. RSC Adv. 2015, 5, 47909–47919. DOI: 10.1039/C5RA08284F.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.