153
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Preparation and performance evaluation of oil-tolerant and easy-wetting viscoelastic system for enhancing the stability of highly viscous oil-water lubricated flow

, , , , , , & show all
Pages 2651-2663 | Received 06 Jan 2022, Accepted 30 Aug 2022, Published online: 10 Sep 2022

References

  • Government of Alberta, Energy Annual Report 2019–2020. 2020. https://open.alberta.ca/publications.
  • Sun, J.; Jing, J.; Brauner, N.; Han, L.; Ullmann, A. An Oil-Tolerant and Salt-Resistant Aqueous Foam System for Heavy Oil Transportation. J. Ind. Eng. Chem. 2018, 68, 99–108. DOI: 10.1016/j.jiec.2018.07.033.
  • Al-Besharah, J. M.; Salman, O. A.; Akashah, S. A. Viscosity of Crude Oil Blends Ind. Eng. Chem. Res. 1987, 26, 2445–2449. DOI: 10.1021/ie00072a010.
  • Jing, J.; Sun, J.; Tan, J.; Huang, M.; Liang, Q.; Xue, T. Investigation on Flow Patterns and Pressure Drops of Highly Viscous Crude Oil–Water Flows in a Horizontal Pipe. Exp. Therm. Fluid Sci. 2016, 72, 88–96. DOI: 10.1016/j.expthermflusci.2015.10.022.
  • Jing, J.; Yin, R.; Zhu, G.; Xue, J.; Wang, S.; Wang, S. Viscosity and Contact Angle Prediction of Low Water-Containing Heavy Crude Oil Diluted with Light Oil. J. Pet. Sci. Eng. 2019, 176, 1121–1134. DOI: 10.1016/j.petrol.2019.02.012.
  • Sun, J.; Jing, J.; Wu, C.; Xiao, F.; Luo, X. Pipeline Transport of Heavy Crudes as Stable Foamy Oil. J. Ind. Eng. Chem. 2016, 44, 126–135. DOI: 10.1016/j.jiec.2016.08.019.
  • Strelets, L. A.; Ilyin, S. O. Effect of Enhanced Oil Recovery on the Composition and Rheological Properties of Heavy Crude Oil. J. Pet. Sci. Eng. 2021, 203, 108641. DOI: 10.1016/j.petrol.2021.108641.
  • Rivero-Sanchez, J. A.; Ramos-Pallares, F.; Schoeggl, F. F.; Yarranton, H. W. Asphaltene Precipitation from Heavy Oil Diluted with Petroleum Solvents. Energy Fuels 2021, 35, 9396–9407. DOI: 10.1021/acs.energyfuels.1c01049.
  • Ma, W.; Li, Y.; Shen, L.; et al. Numerical Simulation of Water Film Drag-Reduction Transport of Super Heavy Oil. J. Liaoning Shihua Univ. 2011, 31, 38–41. DOI: 10.3969/j.issn.1672-6952.2011.03.011.
  • Ghannam, M.; Esmail, N. Flow Enhancement of Medium-Viscosity Crude Oil. Pet. Sci. Technol. 2006, 24, 985–999. DOI: 10.1081/LFT-200048166.
  • Zaman, M.; Bjorndalen, N.; Islam, M. R. Detection of Precipitation in Pipelines. Pet. Sci. Technol. 2004, 22, 1119–1141. DOI: 10.1081/LFT-200034063.
  • Almeida, C.; Taqueda, M. E. S.; Souza, N. M. O.; Paiva, J. L. D.; Santos, A. R.; Lia, L. B.; Moraes, M. S. D.; Junior, D. D. M. Energy Savings on Heavy Oil Transportation through Core Annular Flow Pattern: An Experimental Approach. Int. J. Multiphase Flow 2020, 122, 103127. DOI: 10.1016/j.ijmultiphaseflow.2019.103127.
  • Li, J.; Chen, X.; Tang, X.; Sun, Y.; Liu, H.; Deng, L.; Wei, Y. Upgrading Heavy and Extra-Heavy Crude Oil for Transportation by Use an Iron Oil-Soluble Catalyst. Pet. Sci. Technol. 2017, 35, 1203–1208. DOI: 10.1080/10916466.2017.1316739.
  • Sun, J.; Guo, L.; Yin, X.; Jing, J.; Fu, J.; Lu, Y.; Ullmann, A.; Brauner, N. Investigation on Drag Reduction of Aqueous Foam for Transporting Thermally Produced High Viscosity Oil. J. Pet. Sci. Eng. 2022, 210, 110062–110015. DOI: 10.1016/j.petrol.2021.110062.
  • dos Santos, R. G.; Mohamed, R. S.; Bannwart, A. C.; Loh, W. Contact Angle Measurements and Wetting Behavior of Inner Surfaces of Pipelines Exposed to Heavy Crude Oil and Water. J. Pet. Sci. Eng. 2006, 51, 9–16. DOI: 10.1016/j.petrol.2005.11.005.
  • Silva, R. C. R. D.; Mohamed, R. S.; Bannwart, A. C. Wettability Alteration of Internal Surfaces of Pipelines for Use in the Transportation of Heavy Oil via Core-Flow. J. Pet. Sci. Eng. 2006, 51, 17–25. DOI: 10.1016/j.petrol.2005.11.016.
  • Mohammed, M.; Babadagli, T. Wettability Alteration: A Comprehensive Review of Materials/Methods and Testing the Selected Ones on Heavy-Oil Containing Oil-Wet Systems. Adv. Colloid Interface Sci. 2015, 220, 54–77. DOI: 10.1016/j.cis.2015.02.006.
  • Yao, Y.; Wei, M.; Kang, W. A Review of Wettability Alteration Using Surfactants in Carbonate Reservoirs. Adv. Colloid Interface Sci. 2021, 294, 102477. DOI: 10.1016/j.cis.2021.102477.
  • Xia, H-f.; Wang, D.; Hou, J.; et al. Effect of Viscoelasticity of Polymer Solution on Oil Displacement Efficiency. J. Northeast Pet. Univ. 2002, 26, 109–111. http://xuebao.nepu.edu.cn/info/1237/7164.htm.
  • Corredor, L.; Maini, B.; Husein, M. 2018 Improving Polymer Flooding by Addition of Surface Modified Nanoparticles. SPE Asia Pacific Oil & Gas Conference and Exhibition, 1–21. DOI: 10.2118/192141-ms.
  • Corredor, L. M.; Husein, M. M.; Maini, B. B. A Review of Polymer Nanohybrids for Oil Recovery. Adv. Colloid Interface Sci. 2019, 272, 102018. DOI: 10.1016/j.cis.2019.102018.
  • Tan, J.; Hu, H.; Vahaji, S.; Jing, J.; Tu, J. Effects of Drag-Reducing Polymers on the Flow Patterns, Pressure Gradients, and Drag-Reducing Rates of Horizontal Oil–Water Flows. Int. J. Multiphase Flow 2022, 153, 104136. DOI: 10.1016/j.ijmultiphaseflow.2022.104136.
  • Al-Wahaibi, T.; Abubakar, A.; Al-Hashmi, A. R.; Al-Wahaibi, Y.; Al-Ajmi, A. Energy Analysis of Oil-Water Flow with Drag-Reducing Polymer in Different Pipe Inclinations and Diameters. J. Pet. Sci. Eng. 2017, 149, 315–321. DOI: 10.1016/j.petrol.2016.10.060.
  • Al-Yaari, M.; Soleimani, A.; Abu-Sharkh, B.; Al-Mubaiyedh, U.; Al-sarkhi, A. Effect of Drag Reducing Polymers on Oil Water Flow in a Horizontal Pipe. Int. J. Multiphase Flow 2009, 35, 516–524. DOI: 10.1016/j.ijmultiphaseflow.2009.02.017.
  • Edomwonyi-Otu, L. C.; Chinaud, M.; Angeli, P. Effect of Drag Reducing Polymer on Horizontal Liquid-Liquid Flows.Exp. Therm. Fluid Sci. 2015, 64, 164–174. DOI: 10.1016/j.expthermflusci.2015.02.018.
  • Al-Yaari, M.; Al-Sarkhi, A.; Abu-Sharkh, B. Effect of Drag Reducing Polymers on Water Holdup in an Oil-Water Horizontal Flow. Int. J. Multiphase Flow 2012, 44, 29–33. DOI: 10.1016/j.ijmultiphaseflow.2012.04.001.
  • Yusuf, N.; Al-Wahaibi, T.; Al-Wahaibi, Y.; Al-Ajmi, A.; Al-Hashmi, A. R.; Olawale, A. S.; Mohammed, I. A. Experimental Study on the Effect of Drag Reducing Polymer on Flow Patterns and Drag Reduction in a Horizontal Oil-Water Flow. Int. J. Heat Fluid Flow 2012, 37, 74–80. DOI: 10.1016/j.ijheatfluidflow.2012.04.014.
  • Omer, A.; Pal, R. Pipeline Flow Behavior of Water-in-Oil Emulsions with and without a Polymeric Additive in the Aqueous Phase. Chem. Eng. Technol. 2010, 33, 983–992. DOI: 10.1002/ceat.200900297.
  • Deka, P.; Naidu, K. R.; Mandal, T. K.; et al. Flow Pattern Shifting and Drag Reduction in Oilwater Flow in Pipe. Int. J. Res. Eng. Technol. 2014, 2, 245–252.
  • Al-Wahaibi, T.; Smith, M.; Angeli, P. Effect of Drag-Reducing Polymers on Horizontal Oilwater Flows. J. Pet. Sci. Eng. 2007, 57, 334–346. DOI: 10.1016/j.petrol.2006.11.002.
  • Edomwonyi-Otu, L. C.; Angeli, P. Separated Oil-Water Flows with Drag Reducing Polymers. Exp. Therm. Fluid Sci. 2019, 102, 467–478. DOI: 10.1016/j.expthermflusci.2018.12.011.
  • Abubakar, A.; Al-Wahaibi, T.; Al-Hashmi, A. R.; Al-Wahaibi, Y.; Al-Ajmi, A.; Eshrati, M. Influence of Drag-Reducing Polymer on Flow Patterns, Drag Reduction and Slip Velocity Ratio of Oil-Water Flow in Horizontal Pipe. Int. J. Multiphase Flow 2015a, 73, 1–10. DOI: 10.1016/j.ijmultiphaseflow.2015.02.016.
  • Tu, D.; Pan, D. Viscoelastic Liquid Ring Transportation of High Pour Point Crude Oil. Mech. Eng. 1984, 6, 26–28. http://lxsj.cstam.org.cn/CN/Y1984/V6/I4/26.
  • Langsholt, M. 2012 An Experimental Study on Polymeric Type DRA Used in Single- and Multiphase Flow with Emphasis on Degradation, Diameter Scaling and the Effects in Threephase Oil-Water-Gas Flow. Proceedings of the 8th North American Conference on Multiphase Technology, Banff, Canada, June, 20–22: pp. 73–87.
  • Al-Wahaibi, T.; Al-Wahaibi, Y.; Al-Ajmi, A.; Yusuf, N.; Al-Hashmi, A. R.; Olawale, A. S.; Mohammed, I. A. Experimental Investigation on the Performance of Drag Reducing Polymers through Two Pipe Diameters in Horizontal Oil-Water Flows. Exp. Therm. Fluid Sci. 2013, 50, 139–146. DOI: 10.1016/j.expthermflusci.2013.05.014.
  • Eshrati, M.; Al-Hashmi, A. R.; Al-Wahaibi, T.; Al-Wahaibi, Y.; Al-Ajmi, A.; Abubakar, A. Drag Reduction Using High Molecular Weight Polyacrylamides during Multiphase Flow of Oil and Water: A Parametric Study. J. Pet. Sci. Eng. 2015, 135, 403–409. DOI: 10.1016/j.petrol.2015.09.028.
  • Abubakar, A.; Al-Hashmi, A. R.; Al-Wahaibi, T.; Al-Wahaibi, Y.; Al-Ajmi, A.; Eshrati, M. Performance of a Drag-Reducing Polymer in Horizontal and Downward-Inclined Oil-Water Flow. Chem. Eng. Res. Des. 2015b, 104, 237–246. DOI: 10.1016/j.cherd.2015.08.010.
  • Zhang, G.; Zhang, Z. Effective Shear Rate to Flow Fluid in Pipeline. Oil-Gasfield Surf. Eng. 2000, 19, 1–3. DOI: 10.3969/j.issn.1006-6896.2000.01.001.
  • Jiaqiang, J.; Yunpeng, A.; Nana, S.; et al. Salt Resistance of Surfactants and Anionic Polyacrylamide Combined System. Chin. Polym. Bull. 2015, 5, 61–68.
  • Li, Z., Du, S.  Experimental Optimization Design and Statistical Analysis. China Science Publishing: Beijing, 2010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.