146
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Tribological and rheological properties of the lubricant containing hybrid graphene nanosheets (GNs)/titanium dioxide (TiO2) nanoparticles as an additive on calcium grease

ORCID Icon, & ORCID Icon
Pages 2675-2682 | Received 28 Apr 2022, Accepted 03 Sep 2022, Published online: 20 Sep 2022

References

  • Mohamed, A.; Ali, S.; Osman, T. A.; Kamel, B. M. Development and Manufacturing an Automated Lubrication Machine Test for Nano Grease. J. Mater. Res. Technol. 2020, 9, 2054–2062. DOI: 10.1016/j.jmrt.2019.12.038.
  • Duangthongsuk, W.; Wongwises, S. Measurement of Temperature-Dependent Thermal Conductivity and Viscosity of TiO2-Water Nanofluids. Exp. Therm. Fluid Sci. 2009, 33, 706–714. DOI: 10.1016/j.expthermflusci.2009.01.005.
  • Wu, H.; Zhao, J.; Xia, W.; Cheng, X.; He, A.; Yun, J. H.; Wang, L.; Huang, H.; Jiao, S.; Huang, L.; et al. A Study of the Tribological Behaviour of TiO2 Nano-Additive Water-Based Lubricants. Tribol. Int. 2017, 109, 398–408. DOI: 10.1016/j.triboint.2017.01.013.
  • Luo, T.; Wei, X.; Huang, X.; Huang, L.; Yang, F. Tribological Properties of Al2O3 Nanoparticles as Lubricating Oil Additives. Ceram. Int. 2014, 40, 7143–7149. DOI: 10.1016/j.ceramint.2013.12.050.
  • Padgurskas, J.; Rukuiza, R.; Prosyčevas, I.; Kreivaitis, R. Tribological Properties of Lubricant Additives of Fe, Cu and Co Nanoparticles. Tribol. Int. 2013, 60, 224–232. DOI: 10.1016/j.triboint.2012.10.024.
  • Liu, X.; Xu, N.; Li, W.; Zhang, M.; Chen, L.; Lou, W.; Wang, X. Exploring the Effect of Nanoparticle Size on the Tribological Properties of SiO2/Polyalkylene Glycol Nanofluid under Different Lubrication Conditions. Tribol. Int. 2017, 109, 467–472. DOI: 10.1016/j.triboint.2017.01.007.
  • Kamel, B. M.; Tirth, V.; Algahtani, A.; Shiba, M. S.; Mobasher, A.; Hashish, H. A.; Dabees, S. Optimization of the Rheological Properties and Tribological Performance of SAE 5w-30 Base Oil with Added MWCNTs. Lubricants 2021, 9, 94. DOI: 10.3390/lubricants9090094.
  • Kogovšek, J.; Remškar, M.; Mrzel, A.; Kalin, M. Influence of Surface Roughness and Running-in on the Lubrication of Steel Surfaces with Oil Containing MoS2 Nanotubes in All Lubrication Regimes. Tribol. Int. 2013, 61, 40–47. DOI: 10.1016/j.triboint.2012.12.003.
  • Rabaso, P.; Ville, F.; Dassenoy, F.; Diaby, M.; Afanasiev, P.; Cavoret, J.; Vacher, B.; Le Mogne, T. Boundary Lubrication: influence of the Size and Structure of Inorganic Fullerene-like MoS2 Nanoparticles on Friction and Wear Reduction. Wear 2014, 320, 161–178. DOI: 10.1016/j.wear.2014.09.001.
  • Mohamed, A.; Tirth, V.; Kamel, B. M. Tribological Characterization and Rheology of Hybrid Calcium Grease with Graphene Nanosheets and Multi-Walled Carbon Nanotubes as Additives. J. Mater. Res. Technol. 2020, 9, 6178–6185. DOI: 10.1016/j.jmrt.2020.04.020.
  • Anand, R.; Raina, A.; Irfan Ul Haq, M.; Mir, M.; Gulzar, O.; Wani, M. Synergism of TiO2 and Graphene as Nano-Additives in Bio-Based Cutting Fluid—an Experimental Investigation. Tribol. Trans. 2021, 64, 350–366. DOI: 10.1080/10402004.2020.1842953.
  • Mohamed, A.; Osman, T.; Khattab, A.; Zaki, M. Tribological Behavior of Carbon Nanotubes as an Additive on Lithium Grease. Trans. ASME J. Tribol. 2015, 137, 011801. DOI: 10.1115/1.4028225.
  • Fan, X.; Xia, Y.; Wang, L.; Li, W. Multilayer Graphene as a Lubricating Additive in Bentone Grease. Tribol. Lett. 2014, 55, 455–464. DOI: 10.1007/s11249-014-0369-1.
  • Ilie, F.; Covaliu, C. Tribological Properties of the Lubricant Containing Titanium Dioxide Nanoparticles as an Additive. Lubricants 2016, 4, 12. DOI: 10.3390/lubricants4020012.
  • Mohamed, A.; Hamdy, M.; Bayoumi, M.; Osman, T. Experimental Investigations of Rheological Behaviour and Thermal Conductivity of Nanogrease. ILT 2017, 69, 559–565. DOI: 10.1108/ILT-08-2016-0176.
  • Ashour, M.; Osman, T.; Khattab, A.; Elshalakny, A. Novel Tribological Behavior of Hybrid MWCNTs/MLNGPs as an Additive on Lithium Grease. Trans. ASME, J. Tribol. 2017, 139, 041801. DOI: 10.1115/1.4035345.
  • Ali, Z. A. A. A.; Takhakh, A. M.; Al-Waily, M. A Review of Use of Nanoparticle Additives in Lubricants to Improve Its Tribological Properties. Mater. Today: Proc. 2022, 52, 1442–1450. DOI: 10.1016/j.matpr.2021.11.193.
  • Yan, T.; Ingrassia, L. P.; Kumar, R.; Turos, M.; Canestrari, F.; Lu, X.; Marasteanu, M. Evaluation of Graphite Nanoplatelets Influence on the Lubrication Properties of Asphalt Binders. Materials 2020, 13, 772. DOI: 10.3390/ma13030772.
  • Kamel, B. M.; El-Kashif, E.; Hoziefa, W.; Shiba, M. S.; Elshalakany, A. B. The Effect of MWCNTs/GNs Hybrid Addition on the Tribological and Rheological Properties of Lubricating Engine Oil. J. Dispers. Sci. Technol. 2021, 42, 1811–1819. DOI: 10.1080/01932691.2020.1789470.
  • Anand, G.; Saxena, P. 2016 A Review on Graphite and Hybrid Nano-Materials as Lubricant Additives. IOP Conference Series: Materials Science and Engineering, 2016; IOP Publishing, Vol. 149; p. 012201. DOI: 10.1088/1757-899X/149/1/012201.
  • Shuvalov, S. A.; Porfiryev, Y. V.; Kolybelsky, D. S.; Zaychenko, V. A.; Popov, P. S.; Gushchin, P. A.; Mishurov, A. S.; Petrova, D. A.; Vinokurov, V. A. Nanoscale Functional Additives Application in the Low Temperature Greases. Polymers 2021, 13, 3749. DOI: 10.3390/polym13213749.
  • Yousef, S.; Mohamed, A.; Tatariants, M. Mass Production of Graphene Nanosheets by Multi-Roll Milling Technique. Tribol. Int. 2018, 121, 54–63. DOI: 10.1016/j.triboint.2018.01.040.
  • Berman, D.; Erdemir, A.; Sumant, A. V. Graphene: A New Emerging Lubricant. Mater. Today 2014, 17, 31–42. DOI: 10.1016/j.mattod.2013.12.003.
  • Wen, P.; Lei, Y.; Li, W.; Fan, M. Two-Dimension Layered Nanomaterial as Lubricant Additives: Covalent Organic Frameworks beyond Oxide Graphene and Reduced Oxide Graphene. Tribol. Int. 2020, 143, 106051. DOI: 10.1016/j.triboint.2019.106051.
  • Mohamed, A.; El-Sayed, R.; Osman, T. A.; Toprak, M. S.; Muhammed, M.; Uheida, A. Composite Nanofibers for Highly Efficient Photocatalytic Degradation of Organic Dyes from Contaminated Water. Environ. Res. 2016, 145, 18–25. DOI: 10.1016/j.envres.2015.09.024.
  • Mobasher, A.; Khalil, A.; Khashaba, M.; Osman, T. Effect of MWCNTs/Talc Powder Nanoparticles on the Tribological and Thermal Conductivity Performance of Calcium Grease. ILT 2019, 72, 9–14. DOI: 10.1108/ILT-03-2019-0102.
  • ASTM, G., 99–95a Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus. ASTM International 2000.
  • Shebani, A.; Pislaru, C. Wear Measuring and Wear Modelling Based on Archard, ASTM, and Neural Network Models. Int. J. Mech. Aerosp. Indus. Mechatr. Eng. 2015, 9, 177–182.
  • ASTM D566, Standard Test Method for Dropping Point of Lubricating Grease, ASTM, 2020
  • Razali, M. N. B.; Razak, L. T. Synthesis of Grease from Waste Oils and Red Gypsum. 2017.
  • ASTM D 217 – 02. Standard Test Methods for Cone Penetration of Lubricating Grease. Annual Book of ASTM Standards, 2017, Vol 05.01, ASTM.
  • Decagon Device, I., 2004 User’s Manual of KD2 Thermal Properties Analyzer, Version 1.3.
  • Wakeham, W. A.; N. a, A.; S, J. V. Measured of the Transport Properties of Fluids; Blackwell: Oxford, 1991.
  • ASTM D5334–00, Standard Test Methods for Determining of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure ASTM, 2014.
  • Arami, H.; Mazloumi, M.; Khalifehzadeh, R.; Sadrnezhaad, S. Sonochemical Preparation of TiO2 Nanoparticles. Mater. Lett. 2007, 61, 4559–4561. DOI: 10.1016/j.matlet.2007.02.051.
  • Ou, J.; Wang, Y.; Wang, J.; Liu, S.; Li, Z.; Yang, S. Self-Assembly of Octadecyltrichlorosilane on Graphene Oxide and the Tribological Performances of the Resultant Film. J. Phys. Chem. C 2011, 115, 10080–10086. DOI: 10.1021/jp200597k.
  • Prakash, E.; Rajaraman, R.; Sivakumar, K. Tribological Studies on Nano-CaCO3 Additive Mixed Lubricant. IOSR–J. Mech. Civ. Eng. 2014, 6, 68–74.
  • Kong, L.; Sun, J.; Bao, Y. Preparation, Characterization and Tribological Mechanism of Nanofluids. RSC Adv. 2017, 7, 12599–12609. DOI: 10.1039/C6RA28243A.
  • Mishra, P. C.; Mukherjee, S.; Nayak, S. K.; Panda, A. A Brief Review on Viscosity of Nanofluids. Int. Nano Lett. 2014, 4, 109–120. DOI: 10.1007/s40089-014-0126-3.
  • Birleanu, C.; Pustan, M.; Cioaza, M.; Molea, A.; Popa, F.; Contiu, G. Effect of TiO2 Nanoparticles on the Tribological Properties of Lubricating Oil: An Experimental Investigation. Sci. Rep. 2022, 12, 17. DOI: 10.1038/s41598-022-09245-2.
  • Pownraj, C.; Valan Arasu, A. Effect of Dispersing Single and Hybrid Nanoparticles on Tribological, Thermo-Physical, and Stability Characteristics of Lubricants: A Review. J. Therm. Anal. Calorim. 2021, 143, 1773–1809. DOI: 10.1007/s10973-020-09837-y.
  • Huang, S.; Wang, Z.; Xu, L.; Huang, C. Friction and Wear Characteristics of Aqueous ZrO2/GO Hybrid Nanolubricants. Lubricants 2022, 10, 109. DOI: 10.3390/lubricants10060109.
  • Ashour, M.; Mohamed, A.; Elshalakany, A. B.; Osman, T.; Khatab, A. Rheological Behavior of Lithium Grease with CNTs/GNPs Hybrid Nanocomposite as an Additive. ILT 2018, 70, 331–338. DOI: 10.1108/ILT-10-2017-0305.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.