81
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effect of pressure on methane hydrate formation in graphite nanofluids in non-stirred system

, , , ORCID Icon &
Pages 2683-2691 | Received 14 Jun 2022, Accepted 03 Sep 2022, Published online: 21 Sep 2022

References

  • Veluswamy, H. P.; Kumar, A.; Seo, Y.; Lee, J. D.; Linga, P. A Review of Solidified Natural Gas (SNG) Technology for Gas Storage via Clathrate Hydrates. Appl. Energy 2018, 216, 262–285. DOI: 10.1016/j.apenergy.2018.02.059.
  • Wu, Y.; Shang, L. Y.; Pan, Z.; Xuan, Y. F.; Baena-Moreno, F. M.; Zhang, Z. E. Gas Hydrate Formation in the Presence of Mixed Surfactants and Alumina Nanoparticles. J. Nat. Gas Sci. Eng. 2021, 94, 104049. DOI: 10.1016/j.jngse.2021.104049.
  • Zhang, S. W.; Shang, L. Y.; Zhou, L.; Lv, Z. B. Hydrate Deposition Model and Flow Assurance Technology in Gas-Dominant Pipeline Transportation Systems: A Review. Energy Fuels 2022, 36, 1747–1775. DOI: 10.1021/acs.energyfuels.1c03812.
  • Qin, Y.; Pan, Z.; Liu, Z.; Shang, L.; Zhou, L. Influence of the Particle Size of Porous Media on the Formation of Natural Gas Hydrate: A Review. Energy Fuels 2021, 35, 11640–11664. DOI: 10.1021/acs.energyfuels.1c00936.
  • Xia, Z. M.; Li, X. S.; Chen, Z. Y.; Li, G.; Cai, J.; Wang, Y.; Yan, K. F.; Xu, C. G. Hydrate-Based Acidic Gases Capture for Clean Methane with New Synergic Additives. Appl. Energy 2017, 207, 584–593. DOI: 10.1016/j.apenergy.2017.06.017.
  • Misyura, S. Y.; Donskoy, I. G. Ways to Improve the Efficiency of Carbon Dioxide Utilization and Gas Hydrate Storage at Low Temperatures. J. Co2 Util. 2019, 34, 313–324. DOI: 10.1016/j.jcou.2019.07.010.
  • Wang, X.; Zhang, F.; Lipiński, W. Research Progress and Challenges in Hydrate-Based Carbon Dioxide Capture Applications. Appl. Energy 2020, 269, 114928. DOI: 10.1016/j.apenergy.2020.114928.
  • Subramani, A.; Jacangelo, J. G. Emerging Desalination Technologies for Water Treatment: A Critical Review. Water Res. 2015, 75, 164–187. DOI: 10.1016/j.watres.2015.02.032.
  • Kakati, H.; Mandal, A.; Laik, S. Promoting Effect of Al2O3/ZnO-Based Nanofluids Stabilized by SDS Surfactant on CH4 + C2H6 + C3H8 Hydrate Formation. J. Ind. Eng. Chem. 2016, 35, 357–368. DOI: 10.1016/j.jiec.2016.01.014.
  • Dufour, T.; Hoang, H. M.; Oignet, J.; Osswald, V.; Clain, P.; Fournaison, L.; Delahaye, A. Impact of Pressure on the Dynamic Behavior of CO2 Hydrate Slurry in a Stirred Tank Reactor Applied to Cold Thermal Energy Storage. Appl. Energy 2017, 204, 641–652. DOI: 10.1016/j.apenergy.2017.07.098.
  • Behzad, P.; Sabil, K. M.; Kok, K. L.; Bhajan, L.; Khashayar, N. Production of Gas Hydrate in a Semi-Batch Spray Reactor Process as a Means for Separation of Carbon Dioxide from Methane. Chem. Eng. Res. Des. 2018, 138, 168–175. DOI: 10.1016/j.cherd.2018.08.024.
  • Ytl, A.; Jhz, A.; Ssf, B.; Gjc, A. Study on the Kinetics of Hydrate Formation in a Bubble Column. Chem. Eng. Sci. 2007, 62, 1000–1009.
  • Ekta, C.; Nitish, P.; Ajay, M. Enhanced Formation of Methane Hydrate Using a Novel Synthesized Anionic Surfactant for Application in Storage and Transportation of Natural Gas. J. Nat. Gas Sci. Eng. 2018, 56, 246–257.
  • Bhattacharjee, G.; Choudhary, N.; Kumar, A.; Chakrabarty, S.; Kumar, R. Effect of the Amino Acid L-Histidine on Methane Hydrate Growth Kinetics. J. Nat. Gas Sci. Eng. 2016, 35, 1453–1462. DOI: 10.1016/j.jngse.2016.05.052.
  • Qin, Y.; Shang, L.; Lv, Z.; Liu, Z.; He, J.; Li, X.; Binama, M.; Yang, L.; Wang, D. Rapid Formation of Methane Hydrate in Environment-Friendly Leucine-Based Complex Systems. Energy 2022, 254, 124214. DOI: 10.1016/j.energy.2022.124214.
  • Sa, J. H.; Sum, A. K. Promoting Gas Hydrate Formation with Ice-Nucleating Additives for Hydrate-Based Applications. Appl. Energy 2019, 251, 113352. DOI: 10.1016/j.apenergy.2019.113352.
  • Rauh, F.; Pfeiffer, J.; Mizaikoff, B. Infrared Spectroscopy on the Role of Surfactants during Methane Hydrate Formation. RSC Adv. 2017, 7, 39109–39117. DOI: 10.1039/C7RA05242A.
  • Zhong, Y.; Rogers, R. E. Surfactant Effects on Gas Hydrate Formation. Chem. Eng. Sci. 2000, 55, 4175–4187. DOI: 10.1016/S0009-2509(00)00072-5.
  • Liu, X.; Cao, Q.; Xu, D.; Luo, S.; Guo, R. Carboxylate Surfactants as Efficient and Renewable Promoters for Methane Hydrate Formation. Energy Fuels 2021, 35, 5153–5162. DOI: 10.1021/acs.energyfuels.0c03987.
  • Liu, Z.; Li, Y.; Wang, W.; Song, G.; Lu, Z.; Ning, Y.; Liu, S. Experimental Investigation on the Micro-Morphologies and Growing Process of Methane Hydrate Formation in SDS Solution. Fuel 2021, 293, 120320. DOI: 10.1016/j.fuel.2021.120320.
  • Tajima, H.; Kiyono, F.; Yamasaki, A. Direct Observation of the Effect of Sodium Dodecyl Sulfate (SDS) on the Gas Hydrate Formation Process in a Static Mixer. Energy Fuels 2010, 24, 432–438. DOI: 10.1021/ef900863y.
  • Qin, Y.; Bao, R.; Shang, L.; Zhou, L.; Liu, Z. Growth and Occurrence Characteristics of Methane Hydrate in a Complex System of Silica Sand and Sodium Dodecyl Sulfate. Chem. Eng. Sci. 2022, 249, 117349. DOI: 10.1016/j.ces.2021.117349.
  • Bai, J.; Liu, D.; Shang, L.; Lv, Z.; Zhai, J.; Zhao, W.; Zhang, J. Effect of Solid Dispersants on the Formation of Hydrates in W/O Emulsion Systems: Micron and Nanoscale. J. Dispersion Sci. Technol. 2022, 1–11. DOI: 10.1080/01932691.2022.2067171.
  • Feng, L.; Chen, Z.; Dong, H.; Shi, C.; Wang, B.; Lei, Y.; Zheng, L. Promotion Effect of Graphite on Cyclopentane Hydrate Based Desalination. Desalination 2018, 445, 197–203. DOI: 10.1016/j.desal.2018.08.011.
  • Pasieka, J.; Jorge, L.; Coulombe, S.; Servio, P. Effects of as-Produced and Amine-Functionalized Multi-Wall Carbon Nanotubes on Carbon Dioxide Hydrate Formation. Energy Fuels 2015, 29, 5259–5266. DOI: 10.1021/acs.energyfuels.5b01036.
  • Zhou, S. D.; Yu, Y. S.; Zhao, M. M.; Wang, S. L.; Zhang, G. Z. Effect of Graphite Nanoparticles on Promoting CO2 Hydrate Formation. Energy Fuels 2014, 28, 4694–4698. DOI: 10.1021/ef5000886.
  • Zhou, S. D.; Jiang, K.; Zhao, Y. L.; Chi, Y. D.; Wang, S. L.; Zhang, G. Z. Experimental Investigation of CO2 Hydrate Formation in the Water Containing Graphite Nanoparticles and Tetra-n-Butyl Ammonium Bromide. J. Chem. Eng. Data 2018, 63, 389–394. DOI: 10.1021/acs.jced.7b00785.
  • Park, S. S.; Lee, S. B.; Kim, N. J. Effect of Multi-Walled Carbon Nanotubes on Methane Hydrate Formation. J. Ind. Eng. Chem. 2010, 16, 551–555. DOI: 10.1016/j.jiec.2010.03.023.
  • Park, S. S.; An, E. J.; Lee, S. B.; Chun, W. G.; Kim, N. J. Characteristics of Methane Hydrate Formation in Carbon Nanofluids. J. Ind. Eng. Chem. 2012, 18, 443–448. DOI: 10.1016/j.jiec.2011.11.045.
  • Yan, J.; Lu, Y. Y.; Zhong, D. L.; Zou, Z. L.; Li, J. B. Enhanced Methane Recovery from Low-Concentration Coalbed Methane by Gas Hydrate Formation in Graphite Nanofluids. Energy 2019, 180, 728–736. DOI: 10.1016/j.energy.2019.05.117.
  • Song, Y.-M.; Wang, F.; Guo, G.; Luo, S.-J.; Guo, R.-B. Amphiphilic-Polymer-Coated Carbon Nanotubes as Promoters for Methane Hydrate Formation. ACS Sustainable Chem. Eng. 2017, 5, 9271–9278. DOI: 10.1021/acssuschemeng.7b02239.
  • Song, Y.-M.; Wang, F.; Luo, S.-J.; Guo, R.-B.; Xu, D.-Y. Methane Hydrate Formation Improved by Water-Soluble Carbon Nanotubes via π-π Conjugated Molecules Functionalization. Fuel 2019, 243, 185–191. DOI: 10.1016/j.fuel.2019.01.081.
  • Ganji, H.; Manteghian, M.; Zadeh, K. S.; Omidkhah, M. R.; Mofrad, H. R. Effect of Different Surfactants on Methane Hydrate Formation Rate, Stability and Storage Capacity. Fuel 2007, 86, 434–441. DOI: 10.1016/j.fuel.2006.07.032.
  • Abdi-Khanghah, M.; Adelizadeh, M.; Naserzadeh, Z.; Barati, H. Methane Hydrate Formation in the Presence of ZnO Nanoparticle and SDS: Application to Transportation and Storage. J. Nat. Gas Sci. Eng. 2018, 54, 120–130. DOI: 10.1016/j.jngse.2018.04.005.
  • Ren, Z.; Liu, D.; Liu, Z.; Pan, Z. Influence of Sodium Chloride on the Kinetics of Methane Hydrate Formation in the Presence of Surfactant. J. Nat. Gas Sci. Eng. 2020, 83, 103622. DOI: 10.1016/j.jngse.2020.103622.
  • Wang, F.; Song, Y.-M.; Liu, G.-Q.; Guo, G.; Luo, S.-J.; Guo, R.-B. Rapid Methane Hydrate Formation Promoted by Ag&SDS-Coated Nanospheres for Energy Storage. Appl. Energy 2018, 213, 227–234. DOI: 10.1016/j.apenergy.2018.01.021.
  • Lu, Y. Y.; Ge, B. B.; Zhong, D. L.; Lund, H.; Kaiser, M. J. Investigation of Using Graphite Nanofluids to Promote Methane Hydrate Formation: Application to Solidified Natural Gas Storage. Energy 2020, 199, 117424. DOI: 10.1016/j.energy.2020.117424.
  • Ke, W.; Svartaas, T. M.; Chen, D. A Review of Gas Hydrate Nucleation Theories and Growth Models. J. Nat. Gas Sci. Eng. 2019, 61, 169–196. DOI: 10.1016/j.jngse.2018.10.021.
  • Qin, Y.; Bao, R.; Shang, L.; Zhou, L.; Meng, L.; Zang, C.; Sun, X. Effects of Particle Size and Types of Porous Media on the Formation and Occurrence of Methane Hydrate in Complex Systems. Energy Fuels 2022, 36, 655–668. DOI: 10.1021/acs.energyfuels.1c03378.
  • He, Z.; Linga, P.; Jiang, J. CH4 Hydrate Formation between Silica and Graphite Surfaces: Insights from Microsecond Molecular Dynamics Simulations. Langmuir 2017, 33, 11956–11967. DOI: 10.1021/acs.langmuir.7b02711.
  • Guo, Y.; Xiao, W.; Pu, W.; Hu, J.; Zhao, J.; Zhang, L. CH4 Nanobubbles on the Hydrophobic Solid-Water Interface Serving as the Nucleation Sites of Methane Hydrate. Langmuir 2018, 34, 10181–10186. DOI: 10.1021/acs.langmuir.8b01900.
  • Amrollahi, A.; Hamidi, A.; Rashidi, A. M. The Effects of Temperature, Volume Fraction and Vibration Time on the Thermo-Physical Properties of a Carbon Nanotube Suspension (Carbon Nanofluid). Nanotechnology 2008, 19, 315701. DOI: 10.1088/0957-4484/19/31/315701.
  • Nashed, O.; Partoon, B.; Lal, B.; Sabil, K. M.; Shariff, A. M. Review the Impact of Nanoparticles on the Thermodynamics and Kinetics of Gas Hydrate Formation. J. Nat. Gas Sci. Eng. 2018, 55, 452–465. DOI: 10.1016/j.jngse.2018.05.022.
  • Zhai, J.; Shang, L.; Zhou, L.; Yao, X.; Bai, J.; Lv, Z. Kinetics of Methane Hydrate Formation in the Presence of Silica Nanoparticles and Cetyltrimethylammonium Bromide. ChemistrySelect 2022, 7, e202200215. DOI: 10.1002/slct.202200215.
  • Mohammadi, A.; Manteghian, M.; Mohammadi, A. H.; Jahangiri, A. Induction Time, Storage Capacity, and Rate of Methane Hydrate Formation in the Presence of SDS and Silver Nanoparticles. Chem. Eng. Commun. 2017, 204, 1420–1427. DOI: 10.1080/00986445.2017.1366903.
  • Najibi, H.; Mirzaee Shayegan, M.; Heidary, H. Experimental Investigation of Methane Hydrate Formation in the Presence of Copper Oxide Nanoparticles and SDS. J. Nat. Gas Sci. Eng. 2015, 23, 315–323. DOI: 10.1016/j.jngse.2015.02.009.
  • Liu, G.; Wang, F.; Luo, S.; Xu, D.; Guo, R. Enhanced Methane Hydrate Formation with SDS-Coated Fe3O4 Nanoparticles as Promoters. J. Mol. Liq. 2017, 230, 315–321. DOI: 10.1016/j.molliq.2016.12.050.
  • Pahlavanzadeh, H.; Rezaei, S.; Khanlarkhani, M.; Manteghian, M.; Mohammadi, A. H. Kinetic Study of Methane Hydrate Formation in the Presence of Copper Nanoparticles and CTAB. J. Nat. Gas Sci. Eng. 2016, 34, 803–810. DOI: 10.1016/j.jngse.2016.07.001.
  • Javidani, A. M.; Abedi-Farizhendi, S.; Mohammadi, A.; Hassan, H.; Mohammadi, A. H.; Manteghian, M. The Effects of Graphene Oxide Nanosheets and Al2O3 Nanoparticles on the Kinetics of Methane + THF Hydrate Formation at Moderate Conditions. J. Mol. Liq. 2020, 316, 113872. DOI: 10.1016/j.molliq.2020.113872.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.