120
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Enhanced simultaneous sequestration of Cd(II) and Pb(II) ions from industrial wastewater samples based on poly-(2-aminothiophenol) functionalized graphene oxide

&
Pages 2700-2710 | Received 23 Jun 2022, Accepted 04 Sep 2022, Published online: 20 Sep 2022

References

  • Rai, P. K.; Tripathi, B. D. Heavy Metals in Industrial Wastewater; Soil and Vegetables in Lohta Village, India. Toxicol. Environ. Chem. 2008, 90, 247–257.
  • Liu, L.; Luo, X.-B.; Ding, L.; Luo, S.-L. Application of Nanotechnology in the Removal of Heavy Metal from Water. Nanomater. Removal Pollut. Resour. Reutilization 2019, 4, 83–147.
  • USEPA. https://www.epa.gov/ground-water-and-drinking-water/table-regulated-drinking-water-contaminants (accessed Jan 1, 2017).
  • Hashemi, P.; Shamizadeh, M.; Badiei, A.; Poor, P. Z.; Ghiasvand, A. R.; Yarahmadi, A. Amino Ethyl-Functionalized Nanoporous Silica as a Novel Fiber Coating for Solid-Phase Microextraction. Anal. Chim. Acta 2009, 646, 1–5. DOI: 10.1016/j.aca.2009.04.023.
  • Mattarozzi, M.; Giannetto, M.; Secchi, A.; Bianchi, F. Novel Coating for Solid-Phase Microextraction- Electropolymerization of a Molecular Receptor Functionalized with 2;2′-Bithiophene for the Determination of Environmental Pollutants at Trace Levels. J. Chromatogr. A 2009, 1216, 3725–3730. DOI: 10.1016/j.chroma.2009.02.077.
  • Ouyang, G.; Oakes, K. D.; Bragg, L.; Wang, S.; Liu, H.; Cui, S.; Servos, M. R.; Dixon, D. G.; Pawliszyn, J. (2011) Sampling-Rate Calibration for Rapid and Nonlethal Monitoring of Organic Contaminants in Fish Muscle by Solid-Phase Microextraction. Environ. Sci. Technol. 2011, 45, 7792–7798. DOI: 10.1021/es201709j.
  • Zhang, X.; Cai, J.; Oakes, K. D.; Breton, F. O.; Servos, M. R.; Pawliszyn, J. Development of the Space-Resolved Solid-Phase Micro Extraction Technique and Its Application Tobiologicalmatrices. Anal. Chem. 2009, 81, 7349–7356. DOI: 10.1021/ac900718q.
  • Burleson, G. L.; Gonzalez, B.; Simons, K.; Jorn, C. Forensic Analysis of a Single Particle of Partially Burnt Gun Powder by Solid Phase Micro-Extraction-Gas Chromatography-Nitrogen Phosphorus Detector. J. Chromatogr. A 2009, 1216, 4679–4683. DOI: 10.1016/j.chroma.2009.03.074.
  • Prasad, B. B.; Tiwari, K.; Singh, M.; Sharma, P. S.; Patel, A. K.; Srivastav, S. Ultra-Trace Analysis of Dopamine Using a Combination of Imprinted Polymer-Brush-Coated SPME and Imprinted Polymer Sensor Techniques. Chromatographia 2009, 69, 949–957. DOI: 10.1365/s10337-009-1039-6.
  • He, Y.; Pohl, J.; Engel, R.; Rothman, L.; Thomas, M. Preparation of Ionic Liquid Based Solid-Phase Microextraction Fiber and Its Application to Forensicde- Termination of Methamphetamine and Amphetamine in Human Urine. J. Chromatogr. A 2009, 1216, 4824–4830. DOI: 10.1016/j.chroma.2009.04.028.
  • Zhu, F.; Xu, J.; Ke, Y.; Huang, S.; Zeng, F.; Luan, T.; Ouyang, G. (2013) Applications of in Vivo and in Vitro Solid-Phase Microextraction Techniques in Plant Analysis- Are- View. Anal. Chim. Acta 2013, 794, 1–14. DOI: 10.1016/j.aca.2013.05.016.
  • Deng, D.-L.; Zhang, J.-Y.; Chen, C.; Hou, X.-L.; Su, Y.-Y.; Wu, L. Monolithicmolecular Imprinted Polymer Fiber for Recognition and Solid Phase Microextraction of Ephedrine and Pseudoephedrine in Biological Samples Prior to Capillary Electrophoresis Analysis. J. Chromatogr. A 2012, 1219, 195–200. DOI: 10.1016/j.chroma.2011.11.016.
  • Wang, F.; Liu, S.; Yang, H.; Zheng, J.; Qiu, J.; Xu, J.; Tong, Y.; Zhu, F.; Ouyang, G. Hierarchical Graphene Coating for Highly Sensitive Solid Phase Microextraction of Organochlorine Pesticides. Talanta 2016, 160, 217–224. DOI: 10.1016/j.talanta.2016.07.013.
  • Liu, S.; Chen, D.; Zheng, J.; Zeng, L.; Jiang, J.; Jiang, F.; Zhu, D.; Shen, G. O. J.; Wu, Jiang,.; R.; Y. The Sensitive and Selective Adsorption of Aromatic Compounds with Highly Crosslinked Polymer Nanoparticles. Nanoscale 2015, 7, 16943–16951. 10.1039/c5nr04624f][26416568]
  • Shahzadi, I.; Khan, Z. H.; Akram, W.; Khan, W. U.; Ahmad, A.; Yasin, N. A.; Yujie, L. Heavy Metal and Organic Pollutants Removal from Water Using Bilayered Polydopamine Composite of Sandwiched Graphene Nanosheets- One Solution for Two Obstacle. Sep. Purif. Technol. 2022, 280, 119711. DOI: 10.1016/j.seppur.2021.119711.
  • Kumar, R.; Bhattacharya, S.; Sharma, P. Novel Insights into Adsorption of Heavy Metal Ions Using Magnetic Graphene Composites. J. Environ. Chem. Eng. 2021, 9, 106212. DOI: 10.1016/j.jece.2021.106212.
  • Kong, Q.; Shi, X.; Ma, W.; Zhang, F.; Yu, T.; Zhao, F.; Zhao, D.; Wei, C. Strategies to Improve the Adsorption Properties of Graphene-Based Adsorbent towards Heavy Metal Ions and Their Compound Pollutants. J. Hazard Mater. 2021, 415, 125690–125690. DOI: 10.1016/j.jhazmat.2021.125690.
  • Abbasi, M.; Safari, E.; Baghdadi, M.; Janmohammadi, M. Enhanced Adsorption of Heavy Metals in Groundwater Using Sand Columns Enriched with Graphene Oxide- Lab-Scale Experiments and Process Modelling. J. Water Process. Eng. 2021, 40, 101961. DOI: 10.1016/j.jwpe.2021.101961.
  • Chaabane, L.; Beyou, E.; Hassen, M.; Baouab, V. Preparation of a Novel Zwitterionic Graphene Oxide-Based Adsorbent to Remove of Heavy Metal Ions from water- Modeling and Comparative Studies. Adv. Powder Technol. 2021, 32, 2502–2516. DOI: 10.1016/j.apt.2021.05.011.
  • Yakout, A. A.; Khan, Z. A. High Performance Zr-MnO2@Reduced Graphene Oxide Nanocomposite for Efficient and Simultaneous Remediation of Arsenates as(V) from Environmental Water Samples. J. Mol. Liq. 2021, 334, 116427. DOI: 10.1016/j.molliq.2021.116427.
  • Ghasemi, S. S.; Hadavifar, M.; Maleki, B.; Mohammadnia, E. Adsorption of Mercury Ions from Synthetic Aqueous Solution Using Polydopamine Decorated SWCNTs. J. Water Process. Eng. 2019, 32, 100965–100965. DOI: 10.1016/j.jwpe.2019.100965.
  • Deshmukh, M. A.; Celiesiute, R.; Ramanaviciene, A.; Shirsat, M. D.; Ramanavicius, A. EDTA@PANI/SWCNTs Nanocomposite Modified Electrode for Electrochemical Determination of Copper (II); Lead (II) and Mercury (II) Ions. Electrochim. Acta 2018, 259, 930–938. DOI: 10.1016/j.electacta.2017.10.131.
  • Onyancha, R. B.; Aigbe, U. O.; Ukhurebor, K. E.; Muchir, P. W. Facile Synthesis and Applications of Carbon Nanotubes in Heavy-Metal Remediation and Biomedical Fields. J. Mol. Struct. 2021, 1238, 130462. DOI: 10.1016/j.molstruc.2021.130462.
  • Fahimirad, B.; Asghari, A.; Rajabi, M. A Novel Nanoadsorbent Consisting of Covalently Functionalizedmelamine onto MWCNT/Fe3O4 Nanoparticles for Efficient Microextraction of Highly Adverse Metal Ions from Organic and Inorganic Vegetables- Optimization by Multivariate Analysis. J. Mol. Liq. 2018, 252, 383–391. DOI: 10.1016/j.molliq.2017.12.133.
  • Alshahrani, A.; Alharbi, A.; Alnasser, S.; Almihdar, M.; Alsuhybani, M.; AlOtaibi, B. Enhanced Heavy Metals Removal by a Novel Carbon Nanotubes Buckypaper Membrane Containing a Mixture of Two biopolymers-Chitosan and i-Carrageenan. Sep. Purif. Technol. 2021, 276, 119300. DOI: 10.1016/j.seppur.2021.119300.
  • Baghayeri, M.; Amiri, A.; Karimabadi, F.; Masi, S. D.; Maleki, B.; Adibian, F.; Pourali, A. R.; Malitesta, C. Magnetic MWCNTs-Dendrimer- A Potential Modifier for Electrochemical Evaluation of as (III) Ions in Real Water Samples. J. Electroanal. Chem. 2021, 888, 115059. DOI: 10.1016/j.jelechem.2021.115059.
  • Kharrazi, S. M.; Mirghaffari, N.; Dastgerdi, M. M.; Soleimani, M. A Novel Post-Modification of Powdered Activated Carbon Prepared from Lignocellulosic Waste through Thermal Tension Treatment to Enhance the Porosity and Heavy Metals Adsorption. Powder Technol. 2020, 366, 358–368. DOI: 10.1016/j.powtec.2020.01.065.
  • Yuan, Y.; An, Z.; Zhang, R.; Wei, X.; Lai, B. Efficiencies and Mechanisms of Heavy Metals Adsorption on Waste Leather-Derived High-Nitrogen Activated Carbon. J. Clean. Prod. 2021, 293, 126215. DOI: 10.1016/j.jclepro.2021.126215.
  • Mariana, M.; Abdul-Khalil, H. P.; S; Mistar, E. M.; Yahya, E. B.; Alfatah, T.; Danish, M.; Amayreh, M. Recent Advances in Activated Carbon Modification Techniques for Enhanced Heavy Metal Adsorption. J. Water Process. Eng. 2021, 43, 102221. DOI: 10.1016/j.jwpe.2021.102221.
  • Gholizadeh, M.; Hu, X. Removal of Heavy Metals from Soil with Biochar Composite- A Critical Review of the Mechanism. J. Environ. Chem. Eng. 2021, 9–105830.
  • Hong, J.; Xie, S.; Mirshahghassemi, J.; Lead, J. Metal (Cd, Cr, Ni, Pb) Removal from Environmentally Relevant Waters Using Polyvinylpyrrolidone-Coated Magnetite Nanoparticles. RSC Adv. 2020, 10, 3266–3276. DOI: 10.1039/c9ra10104g.
  • Zhu, R.; Zhang, P.; Zhang, x.; Yang, M; Zhao, R; Liu, W; Li, Z. Fabrication of Synergistic Sites on an Oxygen-Rich Covalent Organic Framework for Efficient Removal of Cd(II) and Pb(II) from Water. J. Hazard Mater. 2022, 424. DOI: 10.1016/j.jhazmat.2021.127301.
  • Boomi, P.; Raj, J. A.; Palaniappan, S. P.; Poorani, G.; Selvam, S.; Prabu, H. G.; Manisankar, P.; Jeyakanthan, J.; Langeswaran, V. K. Improved Conductivity and Antibacterial Activity of Poly (2-Aminothiophenol)-Silver Nanocomposite against Human Pathogens. J. Photochem. Photobiol. B 2018, 178, 323–329. DOI: 10.1016/j.jphotobiol.2017.11.029.
  • Abd El-Salam, H. M.; Azzam, E. M. S.; Aboad, R. S. Synthesis and Characterization of Poly (2-Aminothiophenol-co-2-Methylaniline)/Silver Nanoparticles as Antisulfate Reducing Bacteria. Int. J. Polym. Mater. Polym. Biomater. 2018, 67, 501–508. DOI: 10.1080/00914037.2017.1354196.
  • Abdallah, S. M.; Mohamed, G. G.; Zayed, M. A.; El-Ela, M. S. A. Spectroscopic Study of Molecular Structures of Novel Schiff Base Derived from o-Phthaldehyde and 2-Aminophenol and Its Coordination Compounds Together with Their Biological Activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2009, 73, 833–840. DOI: 10.1016/j.saa.2009.04.005.
  • Sedghi, R.; Shojaee, M.; Behbahani, M.; Nabid, M. R. Application of Magnetic Nanoparticles Modified with Poly (2-Amino Thiophenol) as a Sorbent for Solid Phase Extraction and Trace Detection of Lead; Copper and Silver Ions in Food Matrices. RSC Adv. 2015, 5, 67418–67426. DOI: 10.1039/C5RA11561B.
  • Nabid, M. R.; Sedghi, R.; Bagheri, A.; Behbahani, M.; Taghizadeh, M.; Oskooie, H. A.; Heravi, M. M. Preparation and Application of Poly (2-Amino Thiophenol)/MWCNTs Nanocomposite for Adsorption and Separation of Cadmium and Lead Ions via Solid Phase Extraction. J. Hazard Mater. 2012, 203–204, 93–100. DOI: 10.1016/j.jhazmat.2011.11.096.
  • Wu, S.; Liu, Z.; Liu, N.; Ma, Z. Oligomeric 2-Aminothiophenol Decorated Carboxyl Graphene- a New Surface Enhanced Raman Reporter and Its Application in Immunosensing. Sens. Actuators B Chem. 2015, 206, 502–507. DOI: 10.1016/j.snb.2014.09.088.
  • Kamel, E. M.; Ahmed, O. M.; Abd El-Salam, H. M. Fabrication of Facile Polymeric Nanocomposites Based on Chitosan-gr-P2-Aminothiophenol for Biomedical Applications. Int. J. Biol. Macromol. 2020, 165, 2649–2659. DOI: 10.1016/j.ijbiomac.2020.09.140.
  • Yakout, A. A.; Alshitari, W.; Akhdhar, A. Synergistic Effect of Cu-Nanoparticles and β-Cyclodextrin Functionalized Reduced Graphene Oxide Nanocomposite on the Adsorptive Remediation of Tetracycline Antibiotics. Carbohydr. Polym. 2021, 273, 118528.
  • Gomes, B.; Araújo, C. M. B.; Nascimento, B. F.; Freire, E. M. L.; Sobrinho, M. A. M.; Carvalho, M. N. Synthesis and Application of Graphene Oxide as a Nanoadsorbent to Remove Cd (II) and Pb (II) from Water: Adsorption Equilibrium, Kinetics, and Regeneration. Environ. Sci. Pollut. Res. Int. 2022, 29, 17358–17372. DOI: 10.1007/s11356-021-16943-3.
  • Yang, X.; Guo, N.; Yu, Y.; Li, H.; Xia, H.; Yu, H. Synthesis of Magnetic Graphene Oxide-Titanate Composites for Efficient Removal of Pb(II) from Wastewater: Performance and Mechanism. J. Environ. Manage. 2020, 256, 109943. DOI: 10.1016/j.jenvman.2019.109943.
  • Wang, X.; Pei, Y.; Lu, M.; Lu, X.; Du, X. Highly Efficient Adsorption of Heavy Metals from Wastewaters by Graphene Oxide-Ordered Mesoporous Silica Materials. J. Mater. Sci. 2015, 50, 2113–2121. DOI: 10.1007/s10853-014-8773-3.
  • Chen, H.; Meng, Y.; Jia, S.; Hua, W.; Cheng, Y.; Lu, J.; Wang, H. Graphene Oxide Modified Waste Newspaper for Removal of Heavy Metal Ions and Its Application in Industrial Wastewater. Mater. Chem. Phys. 2020, 244, 122692. DOI: 10.1016/j.matchemphys.2020.122692.
  • Wu, F. C.; Tseng, R. L.; Juang, R. S. Characteristics of Elovich Equation Used for the Analysis of Adsorption Kinetics in Dye-Chitosan Systems. Chem. Eng. J. 2009, 150, 366–373. DOI: 10.1016/j.cej.2009.01.014.
  • Fu, W.; Huang, Z. Magnetic Dithiocarbamate Functionalized Reduced Graphene Oxide for the Removal of Cu(II), Cd(II), Pb(II), and Hg(II) Ions from Aqueous Solution: Synthesis, Adsorption, and Regeneration. Chemosphere 2018, 209, 449–456. DOI: 10.1016/j.chemosphere.2018.06.087.
  • Jia, Y.; Zhang, Y.; Fu, J.; Yuan, L.; Li, Z.; Liu, C.; Zhao, D.; Wang, X. A Novel Magnetic Biochar/MgFe-Layered Double Hydroxides Composite Removing Pb2+ from Aqueous solution- Isotherms; Kinetics and Thermodynamics. Colloids Surf. A Physicochem. Eng. Asp. 2019, 567, 278–287. DOI: 10.1016/j.colsurfa.2019.01.064.
  • Herath, A.; Layne, C. A.; Perez, F.; Hassan, E. B.; Pittman, C. U.; Mlsna, T. E. KOH-Activated High Surface Area Douglas Fir Biochar for Adsorbing Aqueous Cr(VI); Pb(II) and Cd(II). Chemosphere 2021, 269, 128409. DOI: 10.1016/j.chemosphere.2020.128409.
  • Menazea, A. A.; Ezzat, H. A.; Omara, W.; Basyouni, O. H.; Ibrahim, S. A.; Mohamed, A. A.; Tawfik, W.; Ibrahim, M. A. Chitosan/Graphene Oxide Composite as an Effective Removal of Ni; Cu; as; Cd and Pb from Wastewater. Comput. Theor. Chem. 2020, 1189, 112980. 10.1016/j.comptc.2020.112980.
  • Wang, W.-J.; Lu, X.-Y.; Kong, F.-Y.; Li, H.-Y.; Wang, Z.-X.; Wang, W. A Reduced Graphene Oxide Supported Au-Bi Bimetallic Nanoparticles as an Enhanced Sensing Platform for Simultaneous Voltammetric Determination of Pb (II) and Cd (II). Microchem. J. 2022, 175, 107078. DOI: 10.1016/j.microc.2021.107078.
  • Yakout, A. A.; Albishri, H. M. Solvothermal Synthesis of EDTA-Functionalized Magnetite-Carboxylated Graphene Oxide Nanocomposite as a Potential Magnetic Solid Phase Extractor of p-Phenylenediamine from Environmental Samples. J. Dispersion Sci. Technol. 2019, 40, 369–377. DOI: 10.1080/01932691.2018.1469415.
  • Ahmad, H.; Cai, C.; Liu, C. Separation and Preconcentration of Pb(II) and Cd(II) from Aqueous Samples Using Hyperbranched Polyethyleneimine-Functionalized Graphene Oxide-Immobilized Polystyrene Spherical Adsorbents. Microchem. J. 2019, 145, 833–842. DOI: 10.1016/j.microc.2018.11.032.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.