175
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Cellulose bridged carbonate hydroxyapatite nanoparticles as novel adsorbents for efficient Cr(VI) removal

, , &
Pages 2711-2722 | Received 01 Jul 2022, Accepted 03 Sep 2022, Published online: 20 Sep 2022

References

  • Patel, S. R.; Parikh, S. P.; Prajapati, A. K. Copper Electrode for the Removal of Chromium from Dyestuff Industries Effluent by Electrocoagulation: Kinetic Study and Operating Cost. J. Dispers. Sci. Technol. 2021. DOI: 10.1080/01932691.2021.1878040.
  • Yadav, S.; Srivastava, V.; Banerjee, S.; Weng, C. H.; Sharma, Y. C. Adsorption Characteristics of Modified Sand for the Removal of Hexavalent Chromium Ions from Aqueous Solutions: Kinetic, Thermodynamic and Equilibrium Studies. Catena 2013, 100, 120–127. DOI: 10.1016/j.catena.2012.08.002.
  • Rout, D. R.; Jena, H. M. Synthesis of Novel Reduced Graphene Oxide Decorated β-Cyclodextrin Epichlorohydrin Composite and Its Application for Cr(VI) Removal: Batch and Fixed-Bed Studies. Sep. Purif. Technol. 2021, 278, 119630.
  • Vaiopoulou, E.; Gikas, P. Regulations for Chromium Emissions to the Aquatic Environment in Europe and Elsewhere. Chemosphere 2020, 254, 126876. DOI: 10.1016/j.chemosphere.2020.126876.
  • Zhang, S. H.; Wu, M. F.; Tang, T. T.; Xing, Q. J.; Peng, C. Q.; Li, F.; Liu, H.; Luo, X. B.; Zou, J. P.; Min, X. B.; et al. Mechanism Investigation of Anoxic Cr(VI) Removal by Nano Zero-Valent Iron Based on XPS Analysis in Time Scale. Chem. Eng. J. 2018, 335, 945–953. DOI: 10.1016/j.cej.2017.10.182.
  • Shi, Y.; Xiong, D.; Zhao, Y.; Li, T.; Zhang, K.; Fan, J. Highly Efficient Extraction/Separation of Cr(VI) by a New Family of Hydrophobic Deep Eutectic Solvents. Chemosphere 2020, 241, 125082. DOI: 10.1016/j.chemosphere.2019.125082.
  • Liu, Y.; Yuan, J.; Ning, Y.; Tang, Y.; Luo, S.; Jiang, B. Efficient Reduction of Cr(VI) and Immobilization of Cr Driven by an Iron-Air Fuel Cell: Reaction Mechanisms and Electricity Generation. Chemosphere 2020, 253, 126730. DOI: 10.1016/j.chemosphere.2020.126730.
  • Pishnamazi, M.; Koushkbaghi, S.; Hosseini, S. S.; Darabi, M.; Yousefi, A.; Irani, M. Metal Organic Framework Nanoparticles Loaded-PVDF/Chitosan Nanofibrous Ultrafiltration Membranes for the Removal of BSA Protein and Cr(VI) Ions. J. Mol. Liq. 2020, 317, 113934. DOI: 10.1016/j.molliq.2020.113934.
  • Jobby, R.; Jha, P.; Yadav, A. K.; Desai, N. Biosorption and Biotransformation of Hexavalent Chromium [Cr(VI)]: A Comprehensive Review. Chemosphere 2018, 207, 255–266. DOI: 10.1016/j.chemosphere.2018.05.050.
  • Yao, F.; Jia, M.; Yang, Q.; Luo, K.; Chen, F.; Zhong, Y.; He, L.; Pi, Z.; Hou, K.; Wang, D.; Li, X. Electrochemical Cr(VI) Removal from Aqueous Media Using Titanium as Anode: Simultaneous Indirect Electrochemical Reduction of Cr (VI) and in-Situ Precipitation of Cr (III). Chemosphere 2020, 260, 127537. DOI: 10.1016/j.chemosphere.2020.127537.
  • Pakade, V. E.; Tavengwa, N. T.; Madikizela, L. M. Recent Advances in Hexavalent Chromium Removal from Aqueous Solutions by Adsorptive Methods. RSC Adv. 2019, 9, 26142–26164.
  • Zhao, J.; Boada, R.; Cibin, G.; Palet, C. Enhancement of Selective Adsorption of Cr Species via Modification of Pine Biomass. Sci. Total. Environ. 2021, 756, 143816.
  • Han, X.; Zhang, Y.; Zheng, C.; Yu, X.; Li, S.; Wei, W. Enhanced Cr(VI) Removal from Water Using a Green Synthesized Nanocrystalline Chlorapatite: Physicochemical Interpretations and Fixed-Bed Column Mathematical Model Study. Chemosphere 2021, 264, 128421. DOI: 10.1016/j.chemosphere.2020.128421.
  • Pai, S.; Kini, S. M.; Selvaraj, R.; Pugazhendhi, A. A Review on the Synthesis of Hydroxyapatite, Its Composites and Adsorptive Removal of Pollutants from Wastewater. J. Water Proc. Eng. 2020, 38, 101574. DOI: 10.1016/j.jwpe.2020.101574.
  • Wei, W.; Tian, Z.; Jiang, L.; Wang, G.; Cui, J.; Li, S.; Zhang, Y.; Wei, Z. Adsorption Behavior and Mechanism of Cu (II) onto Carbonate-Substituted Hydroxyapatite in the Presence of Humic Acid. J. Dispers. Sci. Technol. 2017, 38, 1021–1029. DOI: 10.1080/01932691.2016.1218342.
  • Janusz, W.; Skwarek, E. Study of Sorption Processes of Strontium on the Synthetic Hydroxyapatite. Adsorption 2016, 22, 697–706. DOI: 10.1007/s10450-016-9761-5.
  • Hokkanen, S.; Bhatnagar, A.; Repo, E.; Lou, S.; Sillanpää, M. Calcium Hydroxyapatite Microfibrillated Cellulose Composite as a Potential Adsorbent for the Removal of Cr (VI) from Aqueous Solution. Chem. Eng. J. 2016, 283, 445–452. DOI: 10.1016/j.cej.2015.07.035.
  • Anutrasakda, W.; Phasuk, A.; Tangku, C. Effect of Different CO32- to PO43- Molar Ratios on the Properties, Morphology, and Pb(II) Removal Performance of Carbonated Hydroxyapatite. J. Environ. Chem. Eng. 2021, 9, 104658. DOI: 10.1016/j.jece.2020.104658.
  • Gopalakannan, V.; Viswanathan, N. Development of Nano-Hydroxyapatite Embedded Gelatin Biocomposite for Effective Chromium (VI) Removal. Ind. Eng. Chem. Res. 2015, 54, 12561–12569. DOI: 10.1021/acs.iecr.5b01224.
  • Granados-Correa, F.; Bonifacio-Martinez, J.; Serrano-Gomez, J. Synthesis and Characterization of Calcium Phosphate and Its Relation to Cr(VI) Adsorption Properties. Rev. Int. Contam. Ambient 2010, 26, 129–134.
  • Kousalya, G. N.; Gandhi, M. R.; Meenakshi, S. Removal of Toxic Cr(VI) Ions from Aqueous Solution Using Nano-Hydroxyapatite-Based Chitin and Chitosan Hybrid Composites. Adsorpt. Sci. Technol. 2010, 28, 49–64. DOI: 10.1260/0263-6174.28.1.49.
  • Asgari, G.; Rahmani, A. R.; Faradmal, J.; Mohammadi, A. M. S. Kinetic and Isotherm of Hexavalent Chromium Adsorption onto Nano Hydroxyapatite. J. Res. Health Sci. 2012, 12, 45–53.
  • Campisi, S.; Evangelisti, C.; Postole, G.; Gervasini, A. Combination of Interfacial Reduction of Hexavalent Chromium and Trivalent Chromium Immobilization on Tin-Functionalized Hydroxyapatite Materials. Appl. Surf. Sci. 2021, 539, 148227. DOI: 10.1016/j.apsusc.2020.148227.
  • Wang, H.; Tian, Z.; Jiang, L.; Luo, W.; Wei, Z.; Li, S.; Cui, J.; Wei, W. Highly Efficient Adsorption of Cr(VI) from Aqueous Solution by Fe3+ Impregnated Biochar. J. Dispers. Sci. Technol. 2017, 38, 815–825. DOI: 10.1080/01932691.2016.1203333.
  • Tang, W. Q.; Zeng, R. Y.; Feng, Y. L.; Li, X. M.; Zhen, W. Removal of Cr(VI) from Aqueous Solution by Nano-Carbonate Hydroxylapatite of Different Ca/P Molar Ratios. Chem. Eng. J. 2013, 223, 340–346. DOI: 10.1016/j.cej.2013.02.094.
  • Liu, W.; Tian, S.; Zhao, X.; Xie, W.; Gong, Y.; Zhao, D. Application of Stabilized Nanoparticles for in Situ Remediation of Metal-Contaminated Soil and Groundwater: A Critical Review. Curr. Pollution Rep. 2015, 1, 280–291. DOI: 10.1007/s40726-015-0017-x.
  • Li, Z.; Gong, Y.; Zhao, D.; Dang, Z.; Lin, Z. Enhanced Removal of Zinc and Cadmium from Water Using Carboxymethyl Cellulose-Bridged Chlorapatite Nanoparticles. Chemosphere 2021, 263, 128038. DOI: 10.1016/j.chemosphere.2020.128038.
  • Li, Z.; Gong, Y.; Zhao, D.; Deng, H.; Dang, Z.; Lin, Z. Field Assessment of Carboxymethyl Cellulose Bridged Chlorapatite Microparticles for Immobilization of Lead in Soil: Effectiveness, Long-Term Stability, and Mechanism. Sci. Total Environ. 2021, 781, 146757. DOI: 10.1016/j.scitotenv.2021.146757.
  • Zhang, Y.; Wang, C.; Li, Y.; Lu, A.; Meng, F.; Ding, H.; Mei, F.; Liu, J.; Li, K.; Yang, C.; et al. Carbonate and Cation Substitutions in Hydroxylapatite in Breast Cancer Micro-Calcifications. Min. Mag. 2021, 85, 321–331. DOI: 10.1180/mgm.2021.23.
  • Lakrat, M.; Elansari, L. L.; Mejdoubi, E. Synthesis of B-Type Carbonated Hydroxyapatite by a New Dissolution-Precipitation Method. Mater. Today Proceed. 2020, 31, S83–S88.
  • Sindhya, A.; Jeyakumar, S. J.; Jothibas, M.; Pugalendhi, P. Synthesis and Characterization of Nanohydroxyapatite (nHAp) from Meretrix Meretrix Clam Shells and Its in-Vitro Studies for Biomedical Applications. Vacuum 2022, 204, 111341. DOI: 10.1016/j.vacuum.2022.111341.
  • Hidouri, M.; Dorozhkin, S. V.; Albeladi, N. Thermal Behavior, Sintering and Mechanical Characterization of Multiple Ion-Substituted Hydroxyapatite Bioceramics. J. Inorg. Organomet. Polym. 2019, 29, 87–100. DOI: 10.1007/s10904-018-0969-6.
  • Permatasari, H. A.; Yusuf, Y. Characteristics of Carbonated Hydroxyapatite Based on Abalone Mussel Shells (Halioitis Asinina) Synthesized by Precipitation Method with Aging Time Variations. IOP Conf. Ser.: Mater. Sci. Eng 2019, 546, 042031. DOI: 10.1088/1757-899X/546/4/042031.
  • Saleem, M.; Rasheed, S.; Yougen, C. Silk Fibroin/Hydroxyapatite Scaffold: A Highly Compatible Material for Bone Regeneration. Sci. Technol. Adv. Mater. 2020, 21, 242–266.
  • Yoder, C. H.; Stepien, K. R.; Edner, T. M. A New Model for the Rationalization of the Thermal Behavior of Carbonated Apatites. J. Therm. Anal. Calorim. 2020, 140, 2179–2184. DOI: 10.1007/s10973-019-08946-7.
  • Wati, R.; Yusuf, Y. Effect of Sintering Temperature on Carbonated Hydroxyapatite Derived from Common Cockle Shells (Cerastodermaedule): Composition and Crystal Characteristics. Key Eeng Mater. 2019, 818, 37–43. DOI: 10.4028/www.scientific.net/KEM.818.37.
  • Toufik, E.; Noukrati, H.; Abouricha, S.; Barroug, A.; Ben youcef, H. Novel Biocomposite Based on Functionalized Poorly Crystalline Apatite and Chitosan: A Physicochemical Evaluation. Mater. Today Proceed. 2022, 51, 1918–1923. DOI: 10.1016/j.matpr.2021.02.649.
  • Tsai, S. W.; Yu, W. X.; Hwang, P. A.; Huang, S. S.; Lin, H. M.; Hsu, Y. W.; Hsu, F. Y. Fabrication and Characterization of Strontium-Substituted Hydroxyapatite-CaO-CaCO3 Nanofibers with a Mesoporous Structure as Drug Delivery Carriers. Pharmaceutics 2018, 10, 179. DOI: 10.3390/pharmaceutics10040179.
  • Zhou, H.; Ma, M.; Zhao, Y.; Baig, S. A.; Hu, S.; Ye, M.; Wang, J. Integrated Green Complexing Agent and Biochar Modified Nano Zero-Valent Iron for Hexavalent Chromium Removal: A Characterisation and Performance Study. Sci. Total Environ. 2022, 834, 155080.
  • Pandey, K.; Sharma, S.; Saha, S. Advances in Design and Synthesis of Stabilized Zero-Valent Iron Nanoparticles for Groundwater Remediation. J. Environ. Chem. Eng. 2022, 10, 107993.
  • Zhang, S.; Lyu, H.; Tang, J.; Song, B.; Zhen, M.; Liu, X. A Novel Biochar Supported CMC Stabilized Nano Zero-Valent Iron Composite for Hexavalent Chromium Removal from Water. Chemosphere 2019, 217, 686–694. DOI: 10.1016/j.chemosphere.2018.11.040.
  • Chaudhary, S.; Sharma, P.; Chauhan, P.; Kumar, R.; Umar, A. Functionalized Nanomaterials: A New Avenue for Mitigating Environmental Problems. Int. J. Environ. Sci. Technol. 2019, 16, 5331–5358. DOI: 10.1007/s13762-019-02253-2.
  • An, B.; Liang, Q.; Zhao, D. Removal of Arsenic(V) from Spent Ion Exchange Brine Using a New Class of Starch-Bridged Magnetite Nanoparticles. Water Res. 2011, 45, 1961–1972.
  • Manea, Y. K.; Khan, A. M.; Wani, A. A.; Saleh, M. A.; Qashqoosh, M. T.; Shahadat, M.; Rezakazemi, M. In-Grown Flower like Al-Li/Th-LDH@ CNT Nanocomposite for Enhanced Photocatalytic Degradation of MG Dye and Selective Adsorption of Cr (VI). J. Environ. Chem. Eng. 2022, 10, 106848. DOI: 10.1016/j.jece.2021.106848.
  • Babapour, M.; Dehghani, M. H.; Alimohammadi, M.; Arjmand, M. M.; Salari, M.; Rasuli, L.; Mubarak, N. M.; Khan, N. A. Adsorption of Cr (VI) from Aqueous Solution Using Mesoporous Metal-Organic Framework-5 Functionalized with the Amino Acids: Characterization, Optimization, Linear and Nonlinear Kinetic Models. J. Mol. Liq. 2022, 345, 117835. DOI: 10.1016/j.molliq.2021.117835.
  • Shi, R.; Liu, T.; Lu, J.; Liang, X.; Ivanets, A.; Yao, J.; Su, X. Fe/C Materials Prepared by One-Step Calcination of Acidified Municipal Sludge and Their Excellent Adsorption of Cr (VI). Chemosphere 2022, 304, 135303. DOI: 10.1016/j.chemosphere.2022.135303.
  • Prajapati, A. K.; Mondal, M. K. Green Synthesis of Fe3O4-Onion Peel Biochar Nanocomposites for Adsorption of Cr (VI), Methylene Blue and Congo Red Dye from Aqueous Solutions. J. Mol. Liq. 2022, 349, 118161.
  • Billah, R. E. K.; Elyamani, Y.; Rakhila, Y.; Agunaou, M.; Soufiane, A. Removal of Cr (VI) from Aqueous Solution by Adsorption on the Natural and Activated Fluorapatite. Rasāyan J. Chem. 2019, 12, 347–354.
  • Wang, W. Equilibrium, Kinetics and Thermodynamics Study on the Adsorption of Cr (VI) and as (III) by Diatomite-Modified MnO2. J. Dispers. Sci. Technol. 2022, 43, 859–872. DOI: 10.1080/01932691.2020.1845720.
  • Zeng, S.; Zhong, D.; Xu, Y.; Zhong, N. Biochar-Loaded nZVI/Ni Bimetallic Particles for Hexavalent Chromium Removal from Aqueous Solution. J. Dispers. Sci. Technol. 2022. DOI: 10.1080/01932691.2022.2052310.
  • Li, W.; Zhang, C.; Xin, W.; Zhang, H.; Han, M.; Sun, W.; Li, W. Efficient Resource Treatment of Hexavalent Chromium Wastewater Based on Lead Carbonate (Cerussite)-Induced Precipitation Separation. Proc. Safety Environ. Protect. 2022, 165, 475–486. DOI: 10.1016/j.psep.2022.07.039.
  • Yu, S. H.; Li, H.; Yao, Q. Z.; Fu, S. Q.; Zhou, G. T. Microwave-Assisted Preparation of Sepiolite-Supported Magnetite Nanoparticles and Their Ability to Remove Low Concentrations of Cr (VI). RSC Adv. 2015, 5, 84471–84482. DOI: 10.1039/C5RA14130C.
  • Amornwutiroj, S.; Manpetch, P.; Singhapong, W.; Srinophakun, P.; Jaroenworaluck, A. Controllable Synthesis of Mesoporous Magnetite/Activated Carbon Composites as Efficient Adsorbents for Hexavalent Chromium Removal. J. Dispers. Sci. Technol. 2020, 41, 1427–1444. DOI: 10.1080/01932691.2019.1623690.
  • Rangabhashiyam, S.; Balasubramanian, P. Performance of Novel Biosorbents Prepared Using Native and Naoh Treated Peltophorum Pterocarpum Fruit Shells for the Removal of Malachite Green. Biores. Technol. Rep. 2018, 3, 75–81.
  • Bozbay, R.; Orakdogen, N. Temperature-Regulated Elasticity and Multifunctionality in N-Alkyl Methacrylate Ester-Based Ternary Gels: Optimizing Adsorption and pH/Temperature Dual Sensitivity. Colloid. Polym. Sci. 2022, 300, 531–551. DOI: 10.1007/s00396-022-04963-5.
  • Fan, L.; Zhou, B.; Zhang, S.; Hu, S.; Mi, X.; Sun, R.; Wu, Y. Adsorptive Removal of Low-Concentration Cr(VI) in Aqueous Solution by Mg-Al Layered Double Oxides. Bull. Environ. Contam. Toxicol. 2021, 106, 134–145. DOI: 10.1007/s00128-020-03053-y.
  • Fan, G.; Lin, R.; Su, Z.; Lin, X.; Xu, R.; Chen, W. Removal of Cr(VI) from Aqueous Solutions by Titanate Nanomaterials Synthesized via Hydrothermal Method. Can. J. Chem. Eng. 2017, 95, 717–723. DOI: 10.1002/cjce.22727.
  • Neolaka, Y. A.; Lawa, Y.; Naat, J. N.; Riwu, A. A.; Iqbal, M.; Darmokoesoemo, H.; Kusuma, H. S. The Adsorption of Cr(VI) from Water Samples Using Graphene Oxide-Magnetic (GO-Fe3O4) Synthesized from Natural Cellulose-Based Graphite (Kusambi Wood or Schleichera Oleosa): Study of Kinetics, Isotherms and Thermodynamics. J. Mater. Res. Technol 2020, 9, 6544–6556. DOI: 10.1016/j.jmrt.2020.04.040.
  • Zhang, H.; Tian, Y.; Niu, Y.; Dong, X.; Lou, H.; Zhou, H. Lignosulfonate/N-Butylaniline Hollow Microspheres for the Removal of Cr(VI): Fabrication, Adsorption Isotherm and Kinetics. J. Water Proc. Eng. 2022, 46, 102588. DOI: 10.1016/j.jwpe.2022.102588.
  • Biswal, S. K.; Panigrahi, G. K.; Sahoo, S. K. Green Synthesis of Fe2O3-Ag Nanocomposite Using Psidium Guajava Leaf Extract: An Eco-Friendly and Recyclable Adsorbent for Remediation of Cr(VI) from Aqueous Media. Biophys. Chem. 2020, 263, 106392.
  • Vilardi, G.; Mpouras, T.; Dermatas, D.; Verdone, N.; Polydera, A.; Di Palma, L. Nanomaterials Application for Heavy Metals Recovery from Polluted Water: The Combination of Nano Zero-Valent Iron and Carbon Nanotubes. Competitive Adsorption Non-Linear Modeling. Chemosphere 2018, 201, 716–729. DOI: 10.1016/j.chemosphere.2018.03.032.
  • Khan, A. A.; R. P, S. Adsorption Thermodynamics of Carbofuran on Sn (IV) Arsenosilicate in H+, Na+ and Ca2+ Forms. Colloids Surf. 1987, 24, 33–42. DOI: 10.1016/0166-6622(87)80259-7.
  • Selimin, M. A.; Latif, A. F. A.; Lee, C. W.; Muhamad, M. S.; Basri, H.; Lee, T. C. Adsorption Efficiency of Hydroxyapatite Synthesised from Black Tilapia Fish Scales for Chromium (VI) Removal. Mater. Today Proceed. 2022, 57, 1142–1146. DOI: 10.1016/j.matpr.2021.10.008.
  • Song, Y.; Li, Z.; Shao, S.; Jiao, W.; Liu, Y. High-Gravity Intensified Preparation of D201 Resin-Hydrated Iron Oxide Nanocomposites for Cr (VI) Removal. Adv. Powder Technol. 2021, 32, 1584–1593. DOI: 10.1016/j.apt.2021.03.012.
  • Luo, M.; Huang, C.; Chen, F.; Chen, C.; Li, H. Removal of Aqueous Cr (VI) Using Magnetic-Gelatin Supported on Brassica-Straw Biochar. J. Dispers. Sci. Technol. 2021, 42, 1710–1722. DOI: 10.1080/01932691.2020.1785889.
  • Zhang, J.; Hu, X.; Zhang, K.; Xue, Y. Desorption of Calcium-Rich Crayfish Shell Biochar for the Removal of Lead from Aqueous Solutions. J. Colloid. Interface Sci. 2019, 554, 417–423.
  • Daneshvar, E.; Zarrinmehr, M. J.; Kousha, M.; Hashtjin, A. M.; Saratale, G. D.; Maiti, A.; Vithanage, M.; Bhatnagar, A. Hexavalent Chromium Removal from Water by Microalgal-Based Materials: Adsorption, Desorption and Recovery Studies. Biores. Technol. 2019, 293, 122064. DOI: 10.1016/j.biortech.2019.122064.
  • Xiang, L.; Niu, C. G.; Tang, N.; Lv, X. X.; Guo, H.; Li, Z. W.; Liu, H. Y.; Li, S. L.; Yang, Y. Y.; Liang, C. Polypyrrole Coated Molybdenum Disulfide Composites as Adsorbent for Enhanced Removal of Cr (VI) in Aqueous Solutions by Adsorption Combined with Reduction. Chem. Eng. J. 2021, 408, 127281. DOI: 10.1016/j.cej.2020.127281.
  • Song, L.; Liu, F.; Zhu, C.; Li, A. Facile One-Step Fabrication of Carboxymethyl Cellulose Based Hydrogel for Highly Efficient Removal of Cr (VI) under Mild Acidic Condition. Chem. Eng. J. 2019, 369, 641–651. DOI: 10.1016/j.cej.2019.03.126.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.