151
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Enhanced sequestration of an acidic dye on novel bimetallic metal-organic framework

, , , &
Pages 107-116 | Received 30 Mar 2022, Accepted 09 Oct 2022, Published online: 20 Oct 2022

References

  • Ezugwu, C. I.; Asraf, M. A.; Li, X.; Liu, S.; Kao, C. M.; Zhuiykov, S.; Verpoort, F. Selective and Adsorptive Removal of Anionic Dyes and CO2 with Azolium-Based Metal-Organic Framework. J. Colloid Interface Sci. 2018, 519, 214–223. DOI: 10.1016/j.cis.2018.02.03.
  • Visa, M.; Chelaru, A. M. Hydrothermally Modified Fly Ash for Heavy Metals and Dyes Removal in Advance Waste Water Treatment. Appl. Surf. Sci. 2014, 303, 14–22. Doi DOI: 10.1016/j.apsusc.2014.02.025.
  • Bulgariu, L.; Escudero, L. B.; Bello, O. S.; Iqbal, M.; Nisar, J.; Adegoke, K. A.; Alakhras, F.; Kornaros, M.; Anastopoulos, I. The Utilization of Leaf-Based Adsorbents for Dyes Removal: A Review. J. Mol. Liq. 2019, 276, 728–747. DOI: 10.1016/j.molliq.2018.12.001.
  • Tahir, H.; Sultan, M.; Akhtar, N.; Hameed, U.; Abid, T. Application of Natural and Modified Sugar Cane Bagasse for the Removal of Dye from Aqueous Solution. J. Saudi Chem. Soc. 2016, 20, S115–S121. DOI: 10.1016/j.jscs.2012.09.007.
  • Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A. Adsorption of Methylene Blue on Low-Cost Adsorbents: A Review. J. Hazard. Mater. 2010, 177, 70–80. DOI: 10.1016/j.jhazmat.2009.12.047.
  • Yang, C. X.; Lei, L.; Zhou, P. X.; Zhang, Z.; Lei, Z. Q. Preparation and Characterization of Poly (AA co PVP)/PGS Composite and Its Application for Methylene Blue Adsorption. J. Colloid Interface Sci. 2015, 443, 97–104. DOI: 10.1016/j.jcis.2014.11.040.
  • Mall, I. D.; Srivastava, V. C.; Agarwal, N. K.; Mishra, I. M. Adsorptive Removal of Malachite Green Dye from Aqueous Solution by Bagasse Fly Ash and Activated Carbon – Kinetic Study and Equilibrium Isotherm Analyses. Colloids Surf. A Physicochem. Eng. Aspects 2005, 264, 17–28. DOI: 10.1016/j.colsurfa.2005.03.027.
  • Crini, G. Non-Conventional Low-Cost Adsorbents for Dye Removal: A Review. Bioresour. Technol. 2006, 97, 1061–1085. DOI: 10.1016/j.biortech.2005.05.001.
  • Sun, Q.; Yang, L. The Adsorption of Basic Dyes from Aqueous Solution on Modified Peat-Resin Particle. Water Res. 2003, 37, 1535–1544. DOI: 10.1016/S0043-1354(02)00520-1.
  • Bhattacharyya, R.; Ray, S. K. Enhanced Adsorption of Synthetic Dyes from Aqueous Solution by a Semi-Interpenetrating Network Hydrogel Based on Starch. J. Ind. Eng. Chem. 2014, 20, 3714–3725. DOI: 10.1016/j.jiec.2013.12.071.
  • Farahani, Z. H.; Monfared, H. H.; Mahmoodi, N. M. Garphene Oxide Nanosheet: Preparation and Dye Removal from Binary System Colored Wastewater. Desalin. Water Treat. 2015, 56, 2382–2394. DOI: 10.1080/19443994.2014.960462.
  • Lin, K. A.; Chen, H. A.; Hsu, C. J. Iron-Based Metal Organic Framework, MIL-88A, as a Heterogeneous Persulfate Catalysis for Decolorization of Rhodamine B in Water. RSC Adv. 2015, 5, 32520–32530. DOI: 10.1039/C5RA01447F.
  • Arora, C.; Kumar, P.; Soni, S.; Mittal, J.; Mittal, A.; Singh, B. Efficient Removal of Malachite Green Dye from Aqueous Solution Using Curcuma Caesia Based Activated Carbon. Desal. Water Treat. 2020, 195, 341–352. DOI: 10.5004/dwt.2020.25897.
  • Soni, S.; Bajpai, P. K.; Mittal, J.; Arora, C. Utilisation of Cobalt Doped Iron Based MOF for Enhanced Removal and Recovery of Methylene Blue Dye from Waste Water. J. Mol. Liq. 2020, 314, 113642. DOI: 10.1016/j.molliq.2020.113642.
  • Haque, E.; Lee, J. E.; Jang, I. T.; Hwang, Y. K.; Chang, J. S.; Jegal, J.; Jhung, S. H. Adsorptive Removal of Methyl Orange from Aqueous Solution with Metal-Organic Frameworks, Porous Chromium-Benzenedicarboxylates. J. Hazard. Mater. 2010, 181, 535–542. DOI: 10.1016/j.jhazmat.2010.05.047.
  • Huo, S. H.; Yan, X. P. Metal-Organic Framework MIL-100(Fe) for the Adsorption of Malachite Green from Aqueous Solution. J. Mater. Chem. 2012, 22, 7449–7455. DOI: 10.1039/c2jm16513a.
  • Wu, S. C.; You, X.; Yang, C.; Cheng, J. H. Adsorption Behaviour of Methyl Orange onto an Aluminium-Based Metal Organic Framework, MIL-68(Al). Water Sci. Technol. 2017, 75, 2800–2810. DOI: 10.2166/wst.2017.154.
  • Zhang, Z. H.; Zhang, J. L.; Liu, J. M.; Xiong, Z. H.; Chen, X. Selective and Competitive Adsorption of Azo Dyes on the Metal–Organic Framework ZIF-67. Water Air Soil Pollut. 2016, 227, 471. DOI: 10.1007/s11270-016-3166-7.
  • Lin, S.; Song, Z.; Che, G.; Ren, A.; Li, P.; Liu, C.; Zhang, J. Adsorption Behavior of Metal–Organic Frameworks for Methylene Blue from Aqueous Solution. Microporous Mesoporous Mater. 2014, 193, 27–34. DOI: 10.1016/j.micromeso.2014.03.004.
  • Embaby, M. S.; Elwany, S. D.; Setyaningsih, W.; Saber, M. R. The Adsorptive Properties of UiO-66 towards Organic Dyes: A Record Adsorption Capacity for the Anionic Dye Alizarin Red S. Chin J. Chem. Eng. 2018, 26, 731–739. DOI: 10.1016/j.cjche.2017.07.014.
  • Yang, Q.; Wang, Y.; Wang, J.; Liu, F.; Hu, N.; Pei, H.; Yang, W.; Li, Z.; Suo, Y.; Wang, J. High Effective Adsorption/Removal of Illegal Food Dyes from Contaminated Aqueous Solution by Zr-MOFs (UiO-67). Food Chem. 2018, 254, 241–248. DOI: 10.1016/j.foodchem.02.011.
  • Nanthamathee, C. Effect of Co (II) Dopant on the Removal of Methylene Blue by a Dense Copper Terephthalate. J. Environ. Sci. (China) 2019, 81, 68–79. DOI: 10.1016/j.jes.2019.02.002.
  • Soni, S.; Bajpai, P. K.; Arora, C. A Review on Metal-Organic Frameworks: Synthesis, Properties and Application. Charact. Appl. Nanomater. 2020, 3, 87–106. DOI: 10.24294/can.v3i2.551.
  • Haque, E.; Jun, J. W.; Jhun, S. H. Adsorptive Removal of Methyl Orange and Methylene Blue from Aqueous Solution with a Metal-Organic Framework Material, Iron Terephthalate (MOF-235). J. Hazard. Mater. 2011, 185, 507–511. DOI: 10.1016/j.jhazmat.2010.09.035.
  • Jin, L.; Zhao, X.; Qian, X.; Dong, M. Nickel Nanoparticles Encapsulated in Porous Carbon and Carbon Nanotube Hybrids from Bimetallic Metal-Organic-Frameworks for Highly Efficient Adsorption of Dyes. J. Colloid Interface Sci. 2018, 509, 245–253.
  • Lee, J. Y.; Farha, O. K.; Robert, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Metal-Organic Framework Materials as Catalyst. Chem. Soc. Rev. 2009, 38, 1450–1459. DOI: 10.1039/b807080f.
  • Arora, C.; Soni, S.; Bajpai, P.; Mittal, J.; Mariyam, A. Dye Removal from Wastewater Using Metal Organic Frameworks. In Management of Contaminants of CEC; Singh, P., Hussain, C. M., Rajkhowa, S., Eds.; Elsevier Publishers: Amsterdam, Netherlands, 2021; pp 375–394. DOI: 10.1016/B978-0-12-822263-8.00014.2.
  • Abednatanzi, S.; Derakhshandeh, P. G.; Depauw, H.; Coudert, F. X.; Vrielinck, H.; Van Der Voort, P.; Leus, K. Mixed-Metal Metal-Organic Frameworks. Chem. Soc. Rev. 2019, 48, 2535–2565. DOI: 10.1039/c8cs00337h.
  • Amarajothi, D.; Malik, A. R.; Garcia, H. Mixed-Metal or Mixed Linker Metal Organic Frameworks as Heterogeneous Catalyst. Catal. Sci. Technol. 2016, 6, 5238–5261. DOI: 10.1039/C6CY00695G.
  • Katoch, A.; Bhardwaj, R.; Goyal, N.; Gautam, S. Synthesis, Structural and Optical Study of Ni-Doped Metal-Organic Framework for Adsorption Based Chemical Sensor Application. Vacuum 2018, 158, 249–256. DOI: 10.1016/j.vacuum.2018.09.019.
  • Yang, J. M.; Ying, R. J.; Han, C. X.; Hu, Q. T.; Xu, H. M.; Li, J. H.; Wang, Q.; Zhang, W. Adsorptive Removal of Organic Dyes from Aqueous Solution by a Zr-Based Metal-Organic Framework: Effects of Ce(III) Doping. Dalton Trans. 2018, 47, 3913–3920. DOI: 10.1039/c8dt00217g.
  • Hu, J.; Yu, H.; Dai, W.; Yan, X.; Hu, X.; Huang, H. Enhanced Adsorptive Removal of Hazardous Anionic Dye "Congo Red" by a Ni/Cu Mixed-Component Metal-Organic Porous Material. RSC Adv. 2014, 4, 35124–35130. DOI: 10.1039/C4RA05772D.
  • Han, Y.; Liu, M.; Li, K.; Sun, Q.; Zhang, W.; Song, C.; Zhang, G.; Zhang, Z. C.; Guo, X. In Situ Synthesis of Titanium Doped Hybrid Metal-Organic Framework UiO-66 with Enhanced Adsorption Capacity for Organic Dyes. Inorg. Chem. Front. 2017, 4, 1870–1880. DOI: 10.1039/C7QI00437K.
  • Bello, O. S.; Fatona, T. A.; Falaye, F. S.; Osuolale, O. M.; Njoku, V. O. Adsorption of Eosin Y Dye from Aqueous Solution Using Groundnut Hull-Based Activated Carbon: Kinetic, Equilibrium, and Thermodynamic Studies. Environ. Eng. Sci. 2012, 29, 186–194. DOI: 10.1089/ees.2010.0385.
  • El-Hassan, M. S.; Abbo, M. A.; Hassn, E. A.; Ismaiel, A. M. Adsorptive Removal of Eosin Y Dye by Using PVA/Gelatin/CuO Polymer Nanocomposite Film. Int J. Sci. Res. 2017, 6, 1148–1151. DOI: 10.21275/ART20178127.
  • Patel, A.; Soni, S.; Mittal, J.; Mittal, A.; Arora, C. Sequestration of Crystal Violet from Aqueous Solution Using Ash of Black Turmeric Rhizome. Desalin. Water Treat. 2021, 220, 342–352. DOI: 10.5004/dwt.2021.26911.
  • Yu, J. X.; Zhu, J.; Feng, L. Y.; Cai, X. L.; Zhang, Y. F.; Chi, R. A. Removal of Cationic Dyes by Modified Waste Biosorbent under Continuous Model: Competitive Adsorption and Kinetics. Arab. J. Chem. 2019, 12, 2044–2051. DOI: 10.1016/j.arabjc.2014.12.022.
  • Arora, C.; Soni, S.; Sahu, S.; Mittal, J.; Kumar, P.; Bajpai, P. K. Iron Based Metal Organic Framework for Efficient Removal of Methylene Blue Dye from Industrial Waste. J. Mol. Liq. 2019, 284, 343–352. DOI: 10.1016/j.molliq.2019.04.012.
  • Tan, K.; Nijem, N.; Canepa, P.; Gong, Q.; Li, J.; Thonhauser, T.; Chabal, Y. J. Stability and Hydrolyzation of Metal-Organic Frameworks with Paddle Wheel SBUs upon Hydration. Chem. Mater. 2012, 24, 3153–3167. DOI: 10.1021/cm301427w.
  • Zebardast, M.; Shojeai, A. F.; Tabatabaeian, K. Enhanced Removal of Methylene Blue by Bimetallic Nano-Sized MOF-5s. Iran J. Catal. 2018, 8, 297–309.
  • Soni, S.; Bajpai, P. K.; Bharti, D.; Mittal, J.; Arora, C. Removal of Crystal Violet from Aqueous Solution Using Iron-Based Metal Organic Framework. Desalin. Water Treat. 2020, 205, 386–399. DOI: 10.5004/dwt.2020.26387.
  • Prasad, A. L.; Santhi, T. Adsorption of Hazardous Cationic Dyes from Aqueous Solution onto Acacia Nilotica Leaves as an Eco-Friendly Adsorbent. Sustainable Environ. Res. 2012, 22, 113122. https://pdfs.semanticscholar.org/71bb/36e896a6d8e2449ccbb765628458e0812ed1.pdf.
  • Zare, K.; Sadegh, H.; Ghoshekandi, R. S.; Maazinejad, B.; Ali, V.; Tyagi, I.; Agarwal, S.; Gupta, V. K. Enhanced Removal of Toxic Congo Red Dye Using Multi-Walled Carbon Nanotubes: Kinetic, Equilibrium Studies and Its Comparison with Other Adsorbents. J. Mol. Liq. 2015, 212, 266–271. DOI: 10.1016/j.molliq.2015.09.027.
  • Mittal, A.; Mittal, J.; Malviya, A.; Gupta, V. K. Removal and Recovery of Chrysoidine Y from Aqueous Solutions by Waste Materials. J. Colloid Interface Sci. 2010, 344, 497–507. DOI: 10.1016/j.jcis.2010.01.007.
  • Hameed, B. H.; Ahmad, A. A. Batch Adsorption of Methylene Blue from Aqueous Solution by Garlic Peel, an Agricultural Waste Biomass. J. Hazard. Mater. 2009, 164, 870–875. DOI: 10.1016/j.jhazmat.2008.08.084.
  • Gupta, V. K.; Mittal, A.; Jhare, D.; Mittal, J. Batch and Bulk Removal of Hazardous Colouring Agent Rose Bengal by Adsorption Techniques Using Bottom Ash as Adsorbent. RSC Adv. 2012, 2, 8381–8389. [Database] DOI: 10.1039/C2RA21351F.
  • Saha, P.; Chowdhury, S.; Gupta, S.; Kumar, I.; Kumar, R. Assessment on the Removal of Malachite Green Using Tamarind Fruit Shell as Biosorbent. Clean Soil Air Water 2010, 38, 437–445. DOI: 10.1002/clean.200900234.
  • Bahramifar, N.; Tavasolli, M.; Younesh, H. Removal of Eosin Y and Eosin B Dyes from Polluted Water through Biosorption Using saccharomyces cerevisiae: Isotherm, Kinetic and Thermodynamic Studies. J. Appl. Res. Water Wastewater 2015, 3, 108–114.
  • Mittal, A.; Mittal, J.; Malviya, A.; Gupta, V. K. Adsorptive Removal of Hazardous Anionic Dye ''Congo Red’' from Wastewater Using Waste Materials and Recovery by Desorption. J. Colloid Interface Sci. 2009, 340, 16–26. DOI: 10.1016/j.jcis.2009.08.019.
  • Mittal, A.; Mittal, J.; Malviya, A.; Kaur, D.; Gupta, V. K. Decoloration Treatment of a Hazardous Triarylmethane Dye, Light Green SF (Yellowish) by Waste Material Adsorbents. J. Colloid Interface Sci. 2010, 342, 518–527. DOI: 10.1016/j.jcis.2009.10.046.
  • Kushwaha, A. K.; Gupta, N.; Chattopadhyaya, M. C. Removal of Cationic Methylene Blue and Malachite Green Dyes from Aqueous Solution by Waste Materials of Daucus Carota. J. Saudi Chem. Soc. 2014, 18, 200–207. DOI: 10.1016/j.jscs.2011.06.011.
  • Rajabi, M.; Moradi, O.; Sillanpää, M.; Zare, K.; Asiri, A. M.; Agarwal, S.; Gupta, V. K. Removal of Toxic Chemical Ethidiummonoazide Bromide Using Grapheme Oxide: Thermodynamic and Kinetics Study. J. Mol. Liq. 2019, 293, 111484. DOI: 10.1016/j.molliq.2019.111484.
  • Nandi, B. K.; Goswami, A.; Purkait, M. K. Removal of Cationic Dyes from Aqueous Solutions by Kaolin: Kinetic and Equilibrium Studies. Appl. Clay 2009, 42, 583–590. Sci DOI: 10.1016/j.clay.2008.03.015.
  • Sharma, P.; Kaur, H.; Sharma, M.; Sahore, V. A Review on Applicability of Naturally Available Adsorbents for the Removal of Hazardous Dyes from Aqueous Waste. Environ. Monit. Assess. 2011, 183, 151–195. DOI: 10.1007/s10661-011-1914-0.
  • Jain, R.; Sikarwar, S. Photocatalytic and Adsorption Studies on the Removal of Dye Congo Red from Wastewater. Int. J. Environ. Pollut. 2006, 27, 158–178. DOI: 10.1504/IJEP.2006.010460.
  • Kaith, B. S.; Sharma, J.; Sukriti, S.; Kaur, T.; Shanker, U.; Jassal.; V.;, Sethi. Fabrication of Green Device for Efficient Capture of Toxic Methylene Blue from Industrial Effluent Based on K2Zn3[Fe(CN)6]2.9H2O Nanoparticles Reinforced Gum Xanthan-Psyllium Hydrogel Nanocomposite. J. Chin. Adv. Mater. Soc. 2016, 4, 249–268. DOI: 10.1080/22243682.2016.1214923.
  • Arora, C.; Sahu, D.; Bharti, D.; Tamrakar, V.; Soni, S.; Sharma, S. Adsorption of Hazardous Dye Crystal Violet from Industrial Waste Using Low-Cost Adsorbent Chenopodium album. Desalin. Water Treat. 2019, 167, 324–332. DOI: 10.5004/dwt.2019.24595.
  • Chen, C.; Zhang, M.; Guan, Q.; Li, W. Kinetic and Thermodynamic Studies on Theadsorption of Xylenol Orange onto MIL-101(Cr). Chem. Eng. J. 2012, 183, 60–67. DOI: 10.1016/j.cej.2011.12.021.
  • Mittal, A.; Mittal, J.; Malviya, A.; Kaur, D.; Gupta, V. K. Adsorption of Hazardousdye Crystal Violet from Waste Water by Waste Materials. J. Colloid Interface Sci. 2010, 343, 463–473. DOI: 10.1016/j.jcis.2009.11.060.
  • Tran, H. N.; Tomul, F.; Thi, H.; Ha, N.; Nguyen, D. T.; Lima, E. C.; Le, G. T.; Chang, C. T.; Masindi, V.; Woo,.; S.; H. Innovative Spherical Biochar for Pharmaceutical Removal from Water: Insight into Adsorption Mechanism. J. Hazard. Mater. 2020, 394, 122255. DOI: 10.1016/j.jhazmat.2020.122255.
  • Opera, A.; Degler, D.; Barsan, N.; Hemeryck, A.; Rebholz, J. Basics of Semiconducting Metal Oxide-Based Gas Sensors. In Gas Sensors Based on Conducting Metal Oxides; Nicolae Barsan, Klaus Schierbaum, Eds.; Elsevier Publication: Amsterdam, Netherlands; 2019, Chapter 3; pp 61–165. DOI: 10.1016/B978-0-12-811224-3.00003-2.
  • Zeng, L.; Xiao, L.; Long, Y.; Shi, X. Trichloroacetic Acid-Modulated Synthesis of Polyoxometalate@UiO-66 for Selective Adsorption of Cationic Dyes. J. Colloid Interface Sci. 2018, 516, 274–283. DOI: 10.1016/j.jcis.2018.01.070.
  • Yusuff, A. S.; Ajayi, O. A.; Popoola, L. T. Application of Taguchi Design Approach to Parametric Optimization of Adsorption of Crystal Violet Dye by Activated Carbon from Poultry Litter. Sci. Afr. 2021, 13, e00850. DOI: 10.1016/j.sciaf.2021.e00850.
  • Zhang, X.-S.; Xiang, H.; Li, W.-Z.; Li, Y.-Y.; Ma, X.-R.; Yang, Z.-Z.; Liu, Y. Preparation of Diameter-Controlled Free-Standing MWCNT Membranes and Their Application for Dye Adsorption. RSC Adv. 2021, 11, 33102–33113. DOI: 10.1039/d1ra06701j.
  • Tor, A.; Cengeloglu, Y. Removal of Congo Red from Aqueous Solution by Adsorption onto Acid Activated Red Med. J. Hazard. Mater. 2006, 138, 409–415. DOI: 10.1016/j.jhazmat.2006.04.063.
  • Namasivayam, C.; Kavitha, D. Removal of congo Red from Water by Adsorption onto Activated Carbon Prepared from Coir Pith, an Agricultural Solid Waste. Dyes Pigm. 2002, 54, 47–58. DOI: 10.1016/S0143-7208(02)00025-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.