154
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Preparation and properties of modified nano-montmorillonite viscosity reducers

, , , & ORCID Icon
Pages 151-160 | Received 01 Jul 2022, Accepted 09 Oct 2022, Published online: 22 Oct 2022

References

  • Chi, Y.; Daraboina, N.; Sarica, C. Investigation of Inhibitors Efficacy in Wax Deposition Mitigation Using a Laboratory Scale Flow Loop. AIChE J. 2016, 62, 4131–4139. DOI: 10.1002/aic.15307.
  • Chi, Y.; Daraboina, N.; Sarica, C. Effect of the Flow Field on the Wax Deposition and Performance of Wax Inhibitors: cold Finger and Flow Loop Testing. Energy Fuels 2017, 31, 4915–4924. DOI: 10.1021/acs.energyfuels.7b00253.
  • Martínez-Palou, R.; Mosqueira, M. d L.; Zapata-Rendón, B.; Mar-Juárez, E.; Bernal-Huicochea, C.; de la Cruz Clavel-López, J.; Aburto, J. Transportation of Heavy and Extra-Heavy Crude Oil by Pipeline: A Review. J. Petrol. Sci. Eng. 2011, 75, 274–282. DOI: 10.1016/j.petrol.2010.11.020.
  • Guo, J.; Wang, H.; Chen, C.; Chen, Y.; Xie, X. Synthesis and Evaluation of an Oil-Soluble Viscosity Reducer for Heavy Oil. Pet. Sci. 2010, 7, 536–540. DOI: 10.1007/s12182-010-0105-x.
  • Al-Sabagh, A. M.; Betiha, M. A.; Osman, D. I.; Hashim, A. I.; El-Sukkary, M. M.; Mahmoud, T. Preparation and Evaluation of Poly(Methyl Methacrylate)-Graphene Oxide Nanohybrid Polymers as Pour Point Depressants and Flow Improvers for Waxy Crude Oil. Energy Fuels 2016, 30, 7610–7621. DOI: 10.1021/acs.energyfuels.6b01105.
  • Pan, L.; Feng, G.; Liu, J.; Mao, J.; Wang, H. Oil Soluble Polymers as a Viscosity-Reducing Agent for Super Heavy Oil. Pet. Sci. Technol. 2017, 35, 747–753. DOI: 10.1080/10916466.2016.1273240.
  • Xu, J.; Zou, R.; Gai, D.; Theil, P.; Pickenbach, L.; Li, T.; Li, L.; Cohen Stuart, M. A.; Guo, X. Effect of Aromatic and Aliphatic Pendants in Poly(Maleic Acid Amide -co-Vinyl Acetate) on Asphaltene Precipitation in Heavy Oil. Ind. Eng. Chem. Res. 2018, 57, 10701–10708. DOI: 10.1021/acs.iecr.8b02208.
  • Xu, J.; Qin, B.; Zhao, L.; Jiang, J. Research Progress of Heavy Oil Soluble Viscosity Reducer and Its Viscosity Reduction Mechanism. Appl. Chem. Ind. 2021, 50, 6. DOI: 10.3969/j.issn.1671-3206.2021.06.038.
  • Franco, C. A.; Lozano, M. M.; Acevedo, S.; Nassar, N. N.; Cortes, F. B. Effects of Resin i on Asphaltene Adsorption onto Nanoparticles: A Novel Method for Obtaining Asphaltenes/Resin Isotherms. Energy Fuels 2016, 30, 264–272. DOI: 10.1021/acs.energyfuels.5b02504.
  • Torres, A.; Amaya Suárez, J.; R Remesal, E.; Márquez, A. M.; Fernández Sanz, J.; Rincón Cañibano, C. Adsorption of Prototypical Asphaltenes on Silica: First-Principles Dft Simulations Including Dispersion Corrections. J. Phys. Chem. B 2018, 122, 618–624. DOI: 10.1021/acs.jpcb.7b05188.
  • Anto, R.; Deshmukh, S.; Sanyal, S.; Bhui, U. K. Nanoparticles as Flow Improver of Petroleum Crudes: study on Temperature-Dependent Steady-State and Dynamic Rheological Behavior of Crude Oils. Fuel 2020, 275, 117873. DOI: 10.1016/j.fuel.2020.117873.
  • Mao, J.; Kang, Z.; Yang, X.; Lin, C.; Zheng, L.; Zuo, M.; Mao, J.; Dai, S.; Xue, J.; Ouyang, D. Synthesis and Performance Evaluation of a Nanocomposite Pour-Point Depressant and Viscosity Reducer for High-Pour-Point Heavy Oil. Energy Fuels 2020, 34, 7965–7973. DOI: 10.1021/acs.energyfuels.9b04487.
  • Qing, Y.; Yang, M.; Li, L.; Jiang, W.; Zhao, Y. Effect of Organically Modified Nanosilica on the Viscosity and Rheological Behavior of Karamay Heavy Crude Oil. Energy Fuels 2020, 34, 65–73. DOI: 10.1021/acs.energyfuels.9b01325.
  • Yang, F.; Zhang, Y.; Li, C.; Yao, B.; Tian, K.; Xiao, Z. The Effect of EVA/Nano-Montmorillonite Composite Pour Point Depressant on Waxy Crude Oil in Changqing. CIESC J. 2015, 66, 4611–4617. DOI: 10.11949/j.issn.0438-1157.20150456.
  • Yao, B.; Li, C.; Yang, F.; Sjöblom, J.; Zhang, Y.; Norrman, J.; Paso, K.; Xiao, Z. Organically Modified Nano-Clay Facilitates Pour Point Depressing Activity of Polyoctadecylacrylate. Fuel 2016, 166, 96–105. DOI: 10.1016/j.fuel.2015.10.114.
  • Yao, B.; Li, C.; Yang, F.; Zhang, Y.; Xiao, Z.; Sun, G. Structural Properties of Gelled Changqing Waxy Crude Oil Benefitted with Nanocomposite Pour Point Depressant. Fuel 2016, 184, 544–554. DOI: 10.1016/j.fuel.2016.07.056.
  • He, C.; Ding, Y.; Chen, J.; Wang, F.; Gao, C.; Zhang, S.; Yang, M. Influence of the Nano-Hybrid Pour Point Depressant on Flow Properties of Waxy Crude Oil. Fuel 2016, 167, 40–48. DOI: 10.1016/j.fuel.2015.11.031.
  • Huang, H.; Wang, W.; Peng, Z.; Ding, Y.; Li, K.; Li, Q.; Gong, J. The Influence of Nanocomposite Pour Point Depressant on the Crystallization of Waxy Oil. Fuel 2018, 221, 257–268. DOI: 10.1016/j.fuel.2018.01.040.
  • Al-Sabagh, A. M.; Betiha, M. A.; Osman, D. I.; Hashim, A. I.; El-Sukkary, M. M.; Mahmoud, T. A New Covalent Strategy for Functionalized Montmorillonite–Poly(Methyl Methacrylate) for Improving the Flowability of Crude Oil. RSC Adv. 2016, 6, 109460–109472. DOI: 10.1039/C6RA21319G.
  • Al-Sabagh, A. M.; Betiha, M. A.; Osman, D. I.; Mahmoud, T. Synthesis and Characterization of Nanohybrid of Poly(Octadecylacrylates Derivatives)/Montmorillonite as Pour Point Depressants and Flow Improver for Waxy Crude Oil. J. Appl. Polym. Sci. 2019, 136, 47333. DOI: 10.1002/app.47333.
  • Mojtaba, M.; Reza, A.; Shahriar, O.; Amir, A. I. Effect of DSO, EVA, and SiO2 and Clay Nanohybrids on Rheological Properties of Waxy Oil Mixtures. Mater. Res. Express 2018, 5, 095027. DOI: 10.1088/2053-1591/aad858.
  • Na, L.; Mao, G. L.; Wei, W.; Yang, L. Effect Evaluation of Ethylene Vinyl Acetate/Nano-Montmorillonite Pour-Point Depressant on Improving the Flow Properties of Model Oil. Colloids Surf. A Physicochem. Eng. Asp 2018, 555, 296–303. DOI: 10.1016/j.colsurfa.2018.06.065.
  • Gao, C.; He, C.; Ding, Y.; Chen, J.; Wang, F.; Liu, P.; Zhang, S.; Li, Z.; Yang, M. The Yield Stress of Model Waxy Oil after Incorporation of Organic Montmorillonite. Fuel 2017, 203, 570–578. DOI: 10.1016/j.fuel.2017.05.011.
  • Yu, H.; Sun, Z.; Jing, G.; Zhen, Z.; Liu, Y.; Guo, K. Effect of a Magnetic Nanocomposite Pour Point Depressant on the Structural Properties of Daqing Waxy Crude Oil. Energy Fuels 2019, 33, 6069–6075. DOI: 10.1021/acs.energyfuels.9b00689.
  • Li, F.; Wang, X.; Pan, H.; Li, Q.; Yang, J. Preparation of Disk-like α-Fe2O3 Nanoparticles and Their Catalytic Effect on Extra Heavy Crude Oil Upgrading. Fuel 2019, 251, 644–650. DOI: 10.1016/j.fuel.2019.04.048.
  • Jaber, T. S.; Ali, S.; Hassan, N. Heavy Crude Oil Upgrading Using Nanoparticles by Applying Electromagnetic Technique. Fuel 2018, 232, 704–711. DOI: 10.1016/j.fuel.2018.06.023.
  • Van, H. N.; Van, H. C.; Hoang, T. L.; Nguyen, K. V. N.; CHI, N. H. T. The Starch Modified Montmorillonite for the Removal of Pb(II), Cd(II) and Ni(II) Ions from Aqueous Solutions. Arab. J. Chem. 2020, 13, 7212–7223. DOI: 10.1016/j.arabjc.2020.08.003.
  • Zhao, Q.; Burns, S. E. Microstructure of Single Chain Quaternary Ammonium Cations Intercalated into Montmorillonite: A Molecular Dynamics Study. Langmuir 2012, 28, 16393–16400. DOI: 10.1021/la303422p.
  • Stevanović, M.; Bajić, Z.; Veličković, Z.; Karkalic, R.; Pecić, L.; Otřísal, P.; Marinkovic, A. Adsorption Performances and Antimicrobial Activity of the Nanosilver Modified Montmorillonite Clay. DWT 2020, 187, 345–369. DOI: 10.5004/dwt.2020.25451.
  • Khar’kova, E. M.; Mendeleev, D. I.; Levin, I. S.; Sorokin, S. E.; Gerasin, V. A. Influence of Small Amounts of Water and Ethanol on Na+-Montmorillonitesolid-State Modification by Inorganic and Organic Intercalants. Appl. Clay Sci. 2020, 195, 105734. DOI: 10.1016/j.clay.2020.105734.
  • Alves, J. L.; Rosa, P.; Morales, A. R. Evaluation of Organic Modification of Montmorillonite with Ionic and Nonionic Surfactants. Appl. Clay Sci. 2017, 150, 23–33. DOI: 10.1016/j.clay.2017.09.001.
  • Mosaleheh, N.; Sarvi, M. N. Minimizing the Residual Antimicrobial Activity of Tetracycline after Adsorption into the Montmorillonite: Effect of Organic Modification. Environ. Res. 2020, 182, 109056. DOI: 10.1016/j.envres.2019.109056.
  • Liu, S. M.; Yan, B. B.; Wang, P. Studied on Preparation Montmorillonite Modified by Ctamb and Adsorption Performance on Nitrobenzene. AMR 2012, 557-559, 996–1004. DOI: 10.4028/www.scientific.net/AMR.557-559.996.
  • Zhu, J. X.; Wang, T.; Zhu, R. L.; Ge, F.; Wei, J. M.; Yuan, P.; He, H. P. Novel Polymer/Surfactant Modified Montmorillonite Hybrids and the Implications for the Treatment of Hydrophobic Organic Compounds in Wastewaters. Appl. Clay Sci. 2011, 51, 317–322. DOI: 10.1016/j.clay.2010.12.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.