164
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effect of processing type and compositional change on antioxidant activity of aqueous phase of O/W nano-emulsions during freeze-drying microencapsulation

&
Pages 212-223 | Received 14 Jun 2022, Accepted 18 Oct 2022, Published online: 02 Nov 2022

References

  • Fonseca, L. M.; Radünz, M.; dos Santos Hackbart, H. C.; da Silva, F. T.; Camargo, T. M.; Bruni, G. P.; Monks, J. L.; da Rosa Zavareze, E.; Dias, A. R. Electrospun Potato Starch Nanofibers for Thyme Essential Oil Encapsulation: antioxidant Activity and Thermal Resistance. J. Sci. Food Agric. 2020, 100, 4263–4271. DOI: 10.1002/jsfa.10468.
  • Jabri Karoui, I.; Marzouk, B. Characterization of Bioactive Compounds in Tunisian Bitter Orange (Citrus aurantium L.) Peel and Juice and Determination of Their Antioxidant Activities. Biomed. Res. Int. 2013, 2013, 345415. DOI: 10.1155/2013/345415.
  • Zou, Z.; Xi, W.; Hu, Y.; Nie, C.; Zhou, Z. Antioxidant Activity of Citrus Fruits. Food Chem. 2016, 196, 885–896. DOI: 10.1016/j.foodchem.2015.09.072.
  • Divya, P. J.; Jamuna, P.; Jyothi, L. A. Antioxidant Properties of Fresh and Processed Citrus aurantium Fruit. Cogent. Food Agric. 2016, 2–1184119. DOI: 10.1080/23311932.2016.1184119.
  • de Queiroz, J. L. C.; Medeiros, I.; Trajano, A. C.; Piuvezam, G.; de França Nunes, A. C.; Passos, T. S.; de Araújo Morais, A. H. Encapsulation Techniques Perfect the Antioxidant Action of Carotenoids: A Systematic Review of How This Effect is Promoted. Food Chem. 2022, 385, 132593. DOI: 10.1016/j.foodchem.2022.132593.
  • Gómez, B.; Barba, F. J.; Domínguez, R.; Putnik, P.; Kovačević, D. B.; Pateiro, M.; Toldrá, F.; Lorenzo, J. M. Microencapsulation of Antioxidant Compounds through İnnovative Technologies and İts Specific Application in Meat Processing. Trends Food Sci. Technol. 2018, 82, 135–147. DOI: 10.1016/j.tifs.2018.10.006.
  • Qazi, H. J.; Majeed, H.; Safdar, W.; Antoniou, J.; Fang, Z. A Novel Approach for Microencapsulation of Nanoemulsions to Overcome the Oxidation of Bioactives in Aqueous Phase. AJFST 2015, 7, 388–394. DOI: 10.19026/ajfst.7.1329.
  • Azmi, N. A. N.; Elgharbawy, A. A.; Motlagh, S. R.; Samsudin, N.; Salleh, H. M. Nanoemulsions: Factory for Food, Pharmaceutical and Cosmetics. Process 2019, 7, 617. DOI: 10.3390/pr7090617.
  • Jiang, T.; Charcosset, C. Premix Membrane Emulsification for the Preparation of Curcumin-Loaded Nanoemulsions. J. Food Eng. 2022, 316, 110836. DOI: 10.1016/j.jfoodeng.2021.110836.
  • El-Messery, T. M.; Altuntas, U.; Altin, G.; Özçelik, B. The Effect of Spray-Drying and Freeze-Drying on Encapsulation Efficiency, in Vitro Bioaccessibility and Oxidative Stability of Krill Oil Nanoemulsion System. Food Hydrocoll. 2020, 106, 105890. DOI: 10.1016/j.foodhyd.2020.105890.
  • do Vale Morais, A. R.; do Nascimento Alencar, É.; Júnior, F. H. X.; De Oliveira, C. M.; Marcelino, H. R.; Barratt, G.; Fessi, H.; Do Egito, E. S. T.; Elaissari, A. Freeze-Drying of Emulsified Systems: A Review. Int. J. Pharm. 2016, 503, 102–114. DOI: 10.1016/j.ijpharm.2016.02.047.
  • Gupta, A.; Eral, H. B.; Hatton, T. A.; Doyle, P. S. Nanoemulsions: formation, Properties and Applications. Soft Matter 2016, 12, 2826–2841. DOI: 10.1039/C5SM02958A.
  • Rezvankhah, A.; Emam-Djomeh, Z.; Askari, G. Encapsulation and Delivery of Bioactive Compounds Using Spray and Freeze-Drying Techniques: A Review. Dry. Technol. 2020, 38, 235–258. DOI: 10.1080/07373937.2019.1653906.
  • Turasan, H. Encapsulation of Rosemary Essential Oil. MSC Dissertation, Middle East Technical University 2014, 124.
  • Muñoz Hernández, L. Mucilage from Chia Seeds (Salvia hispanica): Microestructure, Physico-Chemical Characterization and Applications in Food İndustry. PhD Dissertation,Pontificia Universidad Catolica de Chile (Chile), 2012.
  • Timilsena, Y. P.; Adhikari, R.; Kasapis, S.; Adhikari, B. Rheological and Microstructural Properties of the Chia Seed Polysaccharide. Int. J. Biol. Macromol. 2015, 81, 991–999. DOI: 10.1016/j.ijbiomac.2015.09.040.
  • Hu, X.; Wang, K.; Yu, M.; He, P.; Qiao, H.; Zhang, H.; Wang, Z. Characterization and Antioxidant Activity of a Low-Molecular-Weight Xanthan Gum. Biomolecules 2019, 9, 730. DOI: 10.3390/biom9110730.
  • de Campo, C.; Dos Santos, P. P.; Costa, T. M. H.; Paese, K.; Guterres, S. S.; de Oliveira Rios, A.; Flôres, S. H. Nanoencapsulation of Chia Seed Oil with Chia Mucilage (Salvia hispanica L.) as Wall Material: Characterization and Stability Evaluation. Food Chem. 2017, 234, 1–9. DOI: 10.1016/j.foodchem.2017.04.153.
  • da Silva Stefani, F.; de Campo, C.; Paese, K.; Guterres, S. S.; Costa, T. M. H.; Flôres, S. H. Nanoencapsulation of Linseed Oil with Chia Mucilage as Structuring Material: Characterization, Stability and Enrichment of Orange Juice. Food Res. Int. 2019, 120, 872–879. DOI: 10.1016/j.foodres.2018.11.052.
  • Rutz, J. K.; Zambiazi, R. C.; Borges, C. D.; Krumreich, F. D.; da Luz, S. R.; Hartwig, N.; da Rosa, C. G. Microencapsulation of Purple Brazilian Cherry Juice in Xanthan, Tara Gums and Xanthan-Tara Hydrogel Matrixes. Carbohydr. Polym. 2013, 98, 1256–1265. DOI: 10.1016/j.carbpol.2013.07.058.
  • Cai, X.; Du, X.; Cui, D.; Wang, X.; Yang, Z.; Zhu, G. Improvement of Stability of Blueberry Anthocyanins by Carboxymethyl Starch/Xanthan Gum Combinations Microencapsulation. Food Hydrocoll. 2019, 91, 238–245. DOI: 10.1016/j.foodhyd.2019.01.034.
  • Fioramonti, S. A.; Rubiolo, A. C.; Santiago, L. G. Characterisation of Freeze-Dried Flaxseed Oil Microcapsules Obtained by Multilayer Emulsions. Powder Technol. 2017, 319, 238–244. DOI: 10.1016/j.powtec.2017.06.052.
  • Marefati, A.; Sjöö, M.; Timgren, A.; Dejmek, P.; Rayner, M. Fabrication of Encapsulated Oil Powders from Starch Granule Stabilized W/O/W Pickering Emulsions by Freeze-Drying. Food Hydrocoll. 2015, 51, 261–271. DOI: 10.1016/j.foodhyd.2015.04.022.
  • Dag, D.; Kilercioglu, M.; Oztop, M. H. Physical and Chemical Characteristics of Encapsulated Goldenberry (Physalis Peruviana L.) Juice Powder. LWT 2017, 83, 86–94. DOI: 10.1016/j.lwt.2017.05.007.
  • Rocha-Parra, D. F.; Lanari, M. C.; Zamora, M. C.; Chirife, J. Influence of Storage Conditions on Phenolic Compounds Stability, Antioxidant Capacity and Colour of Freeze-Dried Encapsulated Red Wine. LWT 2016, 70, 162–170. DOI: 10.1016/j.lwt.2016.02.038.
  • Yamashita, C.; Chung, M. M. S.; dos Santos, C.; Mayer, C. R. M.; Moraes, I. C. F.; Branco, I. G. Microencapsulation of an Anthocyanin-Rich Blackberry (Rubus spp.) by-Product Extract by Freeze-Drying. LWT 2017, 84, 256–262. DOI: 10.1016/j.lwt.2017.05.063.
  • De Santis, S.; Clodoveo, M. L.; Corbo, F. Correlation between Chemical Characterization and Biological Activity: An Urgent Need for Human Studies Using Extra Virgin Olive Oil. Antioxidants 2022, 11, 258. DOI: 10.3390/antiox11020258.
  • Yalçinöz, Ş.; Ercelebi, E.; Solans, C.; Tadros, T. Screening of Extra Virgin Olive Oil-in-Bitter Orange Juice (o/w) Nano-Emulsions Stabilized with Different Food-Grade Surfactants: A Model System for Natural Daily Use Salad Dressing: A Model System for Natural Daily Use Salad Dressing. Ital. J. Food Sci. 2020, 32. DOI: 10.14674/IJFS.1910.
  • da Silva, B. P.; Anunciação, P. C.; da Silva Matyelka, J. C.; Della Lucia, C. M.; Martino, H. S. D.; Pinheiro-Sant’Ana, H. M. Chemical Composition of Brazilian Chia Seeds Grown in Different Places. Food Chem. 2017, 221, 1709–1716. DOI: 10.1016/j.foodchem.2016.10.115.
  • Capitani, M. I.; Nolasco, S. M.; Tomás, M. C. S tability of Oil-in-Water (O/W) Emulsions with Chia (Salvia hispanica L.) Mucilage. Food Hydrocoll. 2016, 61, 537–546. DOI: 10.1016/j.foodhyd.2016.06.008.
  • Karaman, S.; Kesler, Y.; Goksel, M.; Dogan, M.; Kayacier, A. Rheological and Some Physicochemical Properties of Selected Hydrocolloids and Their İnteractions with Guar Gum: Characterization Using Principal Component Analysis and Viscous Synergism İndex. Int. J. Food Prop. 2014, 17, 1655–1667. DOI: 10.1080/10942912.2012.675612.
  • Yalçinöz, Ş.; Erçelebi, E. Influence of Hydrocolloid Addition on Physical Properties and Rheology of Olive Oil in Bitter Orange Juice (O/W) Nano-Emulsions Prepared with Blends of Different Surfactants. J. Dispers. Sci. Technol. 2020, 1–20. DOI: 10.1080/01932691.2020.1847662.
  • Yalçinöz, Ş.; Erçelebi, E. Effect of Surfactant Type and Droplet Size on Lipid Oxidation in Oil-in-Water Nano-Emulsions. QAS 2020, 12, 1–11. DOI: 10.15586/qas.v12i2.64.
  • Kara, Ş.; Erçelebi, E. A. Thermal Degradation Kinetics of Anthocyanins and Visual Colour of Urmu Mulberry (Morus Nigra L.). J. Food Eng. 2013, 116, 541–547. DOI: 10.1016/j.jfoodeng.2012.12.030.
  • Alfredo, V.-O.; Gabriel, R.-R.; Luis, C.-G.; David, B.-A. Physicochemical Properties of a Fibrous Fraction from Chia (Salvia hispanica L.). LWT 2009, 42, 168–173. DOI: 10.1016/j.lwt.2008.05.012.
  • Segura-Campos, M. R.; Ciau-Solís, N.; Rosado-Rubio, G.; Chel-Guerrero, L.; Betancur-Ancona, D. Betancur-Ancona, D. Chemical and Functional Properties of Chia Seed (Salvia hispanica L.) Gum. Int. J. Food Sci. 2014, 2014, 1–5. DOI: 10.1155/2014/241053.
  • Segura-Campos, M.; Acosta-Chi, Z.; Rosado-Rubio, G.; Chel-Guerrero, L.; Betancur-Ancona, D. Whole and Crushed Nutlets of Chia (Salvia hispanica) from Mexico as a Source of Functional Gums. Food Sci. Technol. (Campinas) 2014, 34, 701–709. DOI: 10.1590/1678-457X.6439.
  • Vera C, N.; Laguna, L.; Zura, L.; Puente, L.; Muñoz, L. A. Evaluation of the Physical Changes of Different Soluble Fibres Produced during an in Vitro Digestion. J. Funct. Foods 2019, 62, 103518. DOI: 10.1016/j.jff.2019.103518.
  • Chen, C.; Chi, Y.-J.; Xu, W. Comparisons on the Functional Properties and Antioxidant Activity of Spray-Dried and Freeze-Dried Egg White Protein Hydrolysate. Food Bioprocess Technol. 2012, 5, 2342–2352. DOI: 10.1007/s11947-011-0606-7.
  • Cortés-Camargo, S.; Acuña-Avila, P. E.; Rodríguez-Huezo, M. E.; Román-Guerrero, A.; Varela-Guerrero, V.; Pérez-Alonso, C. Effect of Chia Mucilage Addition on Oxidation and Release Kinetics of Lemon Essential Oil Microencapsulated Using Mesquite Gum–Chia Mucilage Mixtures. Food Res. Int. 2019, 116, 1010–1019. DOI: 10.1016/j.foodres.2018.09.040.
  • Tsai, H.-L.; Chang, S. K.; Chang, S.-J. Antioxidant Content and Free Radical Scavenging Ability of Fresh Red Pummelo [Citrus grandis (L.) Osbeck] Juice and Freeze-Dried Products. J. Agric. Food Chem. 2007, 55, 2867–2872. DOI: 10.1021/jf0633847.
  • Toobpeng, N.; Powthong, P.; Suntornthiticharoen, P. Evaluation of Antioxidant and Antibacterial Activities of Fresh and Freeze-Dried Selected Fruit Juices. Evaluation 2017, 10.
  • Murali, S.; Kar, A.; Mohapatra, D.; Kalia, P. Encapsulation of Black Carrot Juice Using Spray and Freeze Drying. Food Sci. Technol. Int. 2015, 21, 604–612. DOI: 10.1177/1082013214557843.
  • Felhi, S.; Hajlaoui, H.; Ncir, M.; Bakari, S.; Ktari, N.; Saoudi, M.; Gharsallah, N.; Kadri, A. Nutritional, Phytochemical and Antioxidant Evaluation and FT-IR Analysis of Freeze Dried Extracts of Ecballium elaterium Fruit Juice from Three Localities. Food Sci. Technol. 2016, 36, 646–655. DOI: 10.1590/1678-457x.12916.
  • Beh, L. K.; Zakaria, Z.; Beh, B. K.; Ho, W. Y.; Yeap, S. K.; Alitheen,.; N. B.; M. Comparison of Total Phenolic Content and Antioxidant Activities of Freeze-Dried Commercial and Fresh Fruit Juices. J. Med. Plant Res. 2012, 6, 5857–5862. DOI: 10.5897/JMPR11.991.
  • Sheikh, S. A.; Shahnawaz, M.; Nizamani, S. M.; Bhanger, M. I.; Ahmed, E. Phenolic Contents and Antioxidants Activities in Jamman Fruit (Eugenia jambolana) Products. J. Pharm. Nutr. Sci. 2022, 1, 41–47. DOI: 10.6000/1927-5951.2011.01.01.08.
  • Shofian, N. M.; Hamid, A. A.; Osman, A.; Saari, N.; Anwar, F.; Pak Dek, M. S.; Hairuddin, M. R. Effect of Freeze-Drying on the Antioxidant Compounds and Antioxidant Activity of Selected Tropical Fruits. Int. J. Mol. Sci. 2011, 12, 4678–4692. DOI: 10.3390/ijms12074678.
  • Franceschinis, L.; Salvatori, D. M.; Sosa, N.; Schebor, C. Physical and Functional Properties of Blackberry Freeze-and Spray-Dried Powders. Drying Technol. 2014, 32, 197–207. DOI: 10.1080/07373937.2013.814664.
  • Hatamian, M.; Noshad, M.; Abdanan-Mehdizadeh, S.; Barzegar, H. Effect of Roasting Treatment on Functional and Antioxidant Properties of Chia Seed Flours. NFS J. 2020, 21, 1–8. DOI: 10.1016/j.nfs.2020.07.004.
  • Silva, S. D.; Feliciano, R. P.; Boas, L. V.; Bronze, M. R. Application of FTIR-ATR to Moscatel Dessert Wines for Prediction of Total Phenolic and Flavonoid Contents and Antioxidant Capacity. Food Chem. 2014, 150, 489–493. DOI: 10.1016/j.foodchem.2013.11.028.
  • Tahir, H. E.; Xiaobo, Z.; Zhihua, L.; Jiyong, S.; Zhai, X.; Wang, S.; Mariod, A. A. Rapid Prediction of Phenolic Compounds and Antioxidant Activity of Sudanese Honey Using Raman and Fourier Transform İnfrared (FT-IR) Spectroscopy. Food Chem. 2017, 226, 202–211. DOI: 10.1016/j.foodchem.2017.01.024.
  • Asami, D. K.; Hong, Y. J.; Barrett, D. M.; Mitchell, A. E. Comparison of the Total Phenolic and Ascorbic Acid Content of Freeze-Dried and Air-Dried Marionberry, Strawberry, and Corn Grown Using Conventional, Organic, and Sustainable Agricultural Practices. J. Agric. Food Chem. 2003, 51, 1237–1241. DOI: 10.1021/jf020635c.
  • Shi, Y.; Liang, R.; Chen, L.; Liu, H.; Goff, H. D.; Ma, J.; Zhong, F. The Antioxidant Mechanism of Maillard Reaction Products in Oil-in-Water Emulsion System. Food Hydrocoll. 2019, 87, 582–592. DOI: 10.1016/j.foodhyd.2018.08.039.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.