106
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Response surface modeling of self-assembled fatty amphiphiles for improved stability of o/w emulsions

ORCID Icon, &
Pages 234-248 | Received 19 Aug 2022, Accepted 22 Oct 2022, Published online: 11 Nov 2022

References

  • Filipovic, M.; Lukic, M.; Djordjevic, S.; Krstonosic, V.; Pantelic, I.; Vuleta, G.; Savic, S. Towards Satisfying Performance of an O/W Cosmetic Emulsion: Screening of Reformulation Factors on Textural and Rheological Properties Using General Experimental Design. Int. J. Cosmet. Sci. 2017, 39, 486–499. DOI: 10.1111/ics.12402.
  • Pal, R. Rheology of Simple and Multiple Emulsions. Curr. Opin. Colloid Interface Sci. 2011, 16, 41–60. DOI: 10.1016/j.cocis.2010.10.001.
  • Tadros, T. Application of Rheology for Assessment and Prediction of the Long-Term Physical Stability of Emulsions. Adv. Colloid Interface Sci. 2004, 108–109, 227–258. DOI: 10.1016/j.cis.2003.10.025.
  • Friberg, S. E.; Friberg, S. H. Emulsion Formation BT - Encyclopedia of Colloid and Interface Science; Tadros, T., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2013; pp. 366–414.
  • Schmidts, T.; Dobler, D.; Schlupp, P.; Nissing, C.; Garn, H.; Runkel, F. Development of Multiple W/O/W Emulsions as Dermal Carrier System for Oligonucleotides: Effect of Additives on Emulsion Stability. Int. J. Pharm. 2010, 398, 107–113.
  • Friberg, S. E.; Solans, C. Surfactant Association Structures and the Stability of Emulsions and Foams. Langmuir 1986, 2, 121–126. DOI: 10.1021/la00068a001.
  • Vilasau, J.; Solans, C.; Gómez, M. J.; Dabrio, J.; Mújika-Garai, R.; Esquena, J. Phase Behaviour of a Mixed Ionic/Nonionic Surfactant System Used to Prepare Stable Oil-in-Water Paraffin Emulsions. Colloids Surfaces A Physicochem. Eng. Asp. 2011, 384, 473–481. DOI: 10.1016/j.colsurfa.2011.05.029.
  • Pasquali, R. C.; Taurozzi, M. P.; Bregni, C. Some Considerations about the Hydrophilic–Lipophilic Balance System. Int. J. Pharm. 2008, 356, 44–51.
  • Lukic, M.; Jaksic, I.; Krstonosic, V.; Cekic, N.; Savic, S. A Combined Approach in Characterization of an Effective w/o Hand Cream: The Influence of Emollient on Textural, Sensorial and in Vivo Skin Performance. Int. J. Cosmet Sci. 2012, 34, 140–149.
  • Barry, B. W. Structure and Rheology of Emulsions Stabilised by Mixed Emulsifiers. Rheol. Acta 1971, 10, 96–105. DOI: 10.1007/BF01972485.
  • Eccleston, G. M. Phase Transitions in Ternary Systems and Oil-in-Water Emulsions Containing Cetrimide and Fatty Alcohols. Int. J. Pharm. 1985, 27, 311–323. DOI: 10.1016/0378-5173(85)90079-1.
  • Kouider Amar, M.; Rahal, S.; Laidi, M.; Rebhi, R.; Hentabli, M.; Hanini, S.; Hamadache, M. Rheological and Structural Study of Solid Lipid Microstructures Stabilized within a Lamellar Gel Network. J. Pharm. Innov. 2022, 1–17. DOI: 10.1007/s12247-022-09642-0
  • Hoang, V. D.; Cong, C. P.; Tran, H. H.; Nguyen, H. M. T.; Nguyen, T. T. Influence of Fatty Alcohol Mixing Ratios on Physicochemical Properties of Stearyl–Cetyl–Polysorbate 60–Water Ternary System: Insights from Experiments and Computer Simulations. Colloid Polym. Sci. 2021, 299, 1885–1900. DOI: 10.1007/s00396-021-04874-x.
  • Li, C.; Mei, Z.; Liu, Q.; Wang, J.; Xu, J.; Sun, D. Formation and Properties of Paraffin Wax Submicron Emulsions Prepared by the Emulsion Inversion Point Method. Colloids Surfaces A Physicochem. Eng. Asp. 2010, 356, 71–77. DOI: 10.1016/j.colsurfa.2009.12.036.
  • Dickinson, E.; Goller, M. I.; Wedlock, D. J. Creaming and Rheology of Emulsions Containing Polysaccharide and Non-Ionic or Anionic Surfactants. Colloids Surfaces A Physicochem. Eng. Asp. 1993, 75, 195–201. DOI: 10.1016/0927-7757(93)80430-M.
  • Ou, W.; Ye, C.; Zhang, Q.; Zhu, H.; Zhang, W. Pickering Emulsions Stabilized by Hydrophobically Modified Hemp Powders: The Effect of Formula Compositions on Emulsifying Capability and Stability. J. Dispers. Sci. Technol. 2020, 41, 2143–2151. DOI: 10.1080/01932691.2019.1653196.
  • Fauzee, A. F. B.; Walker, R. B. The Impact of Formulation Variables on the Optimization of Pilot Scale Clobetasol 17-Propionate Creams. Cogent. Eng. 2020, 7, 1804713. DOI: 10.1080/23311916.2020.1804713.
  • B Dawood, N.; A AbdulRazak, A.; S Hamadi, A. Optimizing Nano Metalworking Emulsions Preparation Using Response Surface Method. Eng. Technol. J. 2021, 39, 214–232.
  • Wei, T. K.; Manickam, S. Response Surface Methodology, an Effective Strategy in the Optimization of the Generation of Curcumin‐Loaded Micelles. Asia-Pac. J. Chem. Eng. 2012, 7, S125–S133. DOI: 10.1002/apj.661.
  • Ngan, C. L.; Basri, M.; Lye, F. F.; Masoumi, H. R. F.; Tripathy, M.; Karjiban, R. A.; Abdul-Malek, E. Comparison of Box–Behnken and Central Composite Designs in Optimization of Fullerene Loaded Palm-Based Nano-Emulsions for Cosmeceutical Application. Ind. Crops Prod. 2014, 59, 309–317. DOI: 10.1016/j.indcrop.2014.05.042.
  • Perera, A. S.; Trogadas, P.; Nigra, M. M.; Yu, H.; Coppens, M.-O. Optimization of Mesoporous Titanosilicate Catalysts for Cyclohexene Epoxidation via Statistically Guided Synthesis. J. Mater. Sci. 2018, 53, 7279–7293.
  • Ferreira, S. L. C.; Bruns, R. E.; Ferreira, H. S.; Matos, G. D.; David, J. M.; Brandão, G. C.; da Silva, E. G. P.; Portugal, L. A.; dos Reis, P. S.; Souza, A. S.; et al. Box–Behnken Design: An Alternative for the Optimization of Analytical Methods. Anal. Chim. Acta. 2007, 597, 179–186. DOI: 10.1016/j.aca.2007.07.011.
  • Villar, A. M. S.; Naveros, B. C.; Campmany, A. C. C.; Trenchs, M. A.; Rocabert, C. B.; Bellowa, L. H. Design and Optimization of Self-Nanoemulsifying Drug Delivery Systems (SNEDDS) for Enhanced Dissolution of Gemfibrozil. Int. J. Pharm. 2012, 431, 161–175.
  • Eccleston, G. M.; Behan-Martin, M. K.; Jones, G. R.; Towns-Andrews, E. Synchrotron X-Ray Investigations into the Lamellar Gel Phase Formed in Pharmaceutical Creams Prepared with Cetrimide and Fatty Alcohols. Int. J. Pharm. 2000, 203, 127–139.
  • Sepulveda, E.; Kildsig, D. O.; Ghaly, E. S. Relationship between Internal Phase Volume and Emulsion Stability: The Cetyl Alcohol/Stearyl Alcohol System. Pharm. Dev. Technol. 2003, 8, 263–275.
  • Souto, E. B.; Baldim, I.; Oliveira, W. P.; Rao, R.; Yadav, N.; Gama, F. M.; Mahant, S. SLN and NLC for Topical, Dermal, and Transdermal Drug Delivery. Expert Opin. Drug Deliv. 2020, 17, 357–377. DOI: 10.1080/17425247.2020.1727883.
  • Jenning, V.; Lippacher, A.; Gohla, S. H. Medium Scale Production of Solid Lipid Nanoparticles (SLN) by High Pressure Homogenization. J. Microencapsul. 2002, 19, 1–10. DOI: 10.1080/713817583.
  • Suzuki, T.; Tsutsumi, H.; Ishida, A. Secondary Droplet Emulsion: Mechanism and Effects of Liquid Crystal Formation in o/w Emulsion. J. Dispers. Sci. Andtechnology 1984, 5, 119–141. DOI: 10.1080/01932698408943213.
  • Liu, C.-H.; Wu, C.-T. Optimization of Nanostructured Lipid Carriers for Lutein Delivery. Colloids Surfaces A Physicochem. Eng. Asp. 2010, 353, 149–156. DOI: 10.1016/j.colsurfa.2009.11.006.
  • Lashmar, U. T.; Beesley, J. Correlation of Rheological Properties of an Oil in Water Emulsion with Manufacturing Procedures and Stability. Int. J. Pharm. 1993, 91, 59–67. DOI: 10.1016/0378-5173(93)90421-B.
  • Diniz, F.; Marques, C.; Barbosa, T. C.; et al. DPolymorphism, Crystallinity and Hydrophilic-Lipophilic Balance (HLB) of Cetearyl Alcohol and Cetyl Alcohol as Raw Materials for Solid Lipid Nanoparticles (SLN). Asp. Nanotechnol 2018, 1, 52–60.
  • Hong, I. K.; Kim, S. I.; Lee, S. B. Effects of HLB Value on Oil-in-Water Emulsions: Droplet Size, Rheological Behavior, Zeta-Potential, and Creaming Index. J. Ind. Eng. Chem. 2018, 67, 123–131. DOI: 10.1016/j.jiec.2018.06.022.
  • Osipow, L. I.; Snell, F. D. Comparison of Fatty Acid Esters of Sucrose and of Polyoxyethylene in Built Detergent Compositions. J. Am. Oil. Chem. Soc. 1961, 38, 184–189. DOI: 10.1007/BF02633227.
  • Sperandio, G. J. Emulsions: Theory and Practice. 2nd Ed., Acs Monograph No. 162. By Paul Becher. Reinhold Publishing Corp., 430 Park Ave., New York, N. Y., 1965. Xi + 440 Pp. Price $22. J. Pharm. Sci. 1965, 54, 1227. DOI: 10.1002/jps.2600540838.
  • Schmidts, T.; Schlupp, P.; Gross, A.; Dobler, D.; Runkel, F. Required HLB Determination of Some Pharmaceutical Oils in Submicron Emulsions. J. Dispers. Sci. Technol. 2012, 33, 816–820. DOI: 10.1080/01932691.2011.584800.
  • Rao, M. R. P.; Aghav, S.; Sukre, G.; Kumar, M. Determination of Required HLB of Capryol 90. J. Dispers. Sci. Technol. 2014, 35, 161–167. DOI: 10.1080/01932691.2013.777824.
  • Rohm, K.; Manas-Zloczower, I.; Feke, D. Poly (HIPE) Morphology, Crosslink Density, and Mechanical Properties Influenced by Surfactant Concentration and Composition. Colloids Surfaces A Physicochem. Eng. Asp. 2019, 583, 123913. DOI: 10.1016/j.colsurfa.2019.123913.
  • Dabrowski, M. L.; Jenkins, D.; Cosgriff-Hernandez, E.; Stubenrauch, C. Methacrylate-Based Polymer Foams with Controllable Connectivity, Pore Shape, Pore Size and Polydispersity. Phys. Chem. Chem. Phys. 2020, 22, 155–168. 22DOI: 10.1039/C9CP03606G.
  • Siska, B.; Snejdrova, E.; Machac, I.; Dolecek, P.; Martiska, J. Contribution to the Rheological Testing of Pharmaceutical Semisolids. Pharm. Dev. Technol. 2019, 24, 80–88. DOI: 10.1080/10837450.2018.1425432.
  • Hernandez, C.; Jain, P.; Sharma, H.; Lam, S.; Sonti, S. Investigating the Effect of Transcutol on the Physical Properties of an O/W Cream. J. Dispers. Sci. Technol. 2020, 41, 600–606.
  • Franco, T. S.; Rodríguez, D. C. M.; Soto, M. F. J.; Amezcua, R. M. J.; Urquíza, M. R.; Mijares, E. M.; de Muniz, G. I. B. Production and Technological Characteristics of Avocado Oil Emulsions Stabilized with Cellulose Nanofibrils Isolated from Agroindustrial Residues. Colloids Surfaces Physicochem. Eng. Asp. 2020, 586, 124263. DOI: 10.1016/j.colsurfa.2019.124263.
  • Pandolfe, W. D. Effect of Premix Condition, Surfactant Concentration, and Oil Level on the Formation of Oil-in-Water Emulsions by Homogenization. J. Dispers. Sci. Technol. 1995, 16, 633–650. DOI: 10.1080/01932699508943710.
  • Rapalli, V. K.; Kaul, V.; Waghule, T.; Gorantla, S.; Sharma, S.; Roy, A.; Dubey, S. K.; Singhvi, G. Curcumin Loaded Nanostructured Lipid Carriers for Enhanced Skin Retained Topical Delivery: Optimization, Scale-up, in-Vitro Characterization and Assessment of Ex-Vivo Skin Deposition. Eur. J. Pharm. Sci. 2020, 152, 105438.
  • Hofmann, R.; Förster, T.; von Rybinski, W.; Wadle, A. Rheological Properties of Fine Disperse o/w-Emulsions BT - Trends in Colloid and Interface Science IX; Appell, J., Porte, G., Eds.; Steinkopff: Darmstadt, 1995; pp. 106–110.
  • Lee, C. H.; Moturi, V.; Lee, Y. Thixotropic Property in Pharmaceutical Formulations. J. Control Release. 2009, 136, 88–98. DOI: 10.1016/j.jconrel.2009.02.013.
  • Deshkar, S. S.; Bhalerao, S. G.; Jadhav, M. S.; Shirolkar, S. V. Formulation and Optimization of Topical Solid Lipid Nanoparticles Based Gel of Dapsone Using Design of Experiment. Pharm. Nanotechnol. 2018, 6, 264–275.
  • Rubio-Hernández, F. J.; Sánchez-Toro, J. H.; Páez-Flor, N. M. Testing Shear Thinning/Thixotropy and Shear Thickening/Antithixotropy Relationships in a Fumed Silica Suspension. J. Rheol. (N. Y) 2020, 64, 785–797. DOI: 10.1122/1.5131852.
  • Larson, R. G.; Wei, Y. A Review of Thixotropy and Its Rheological Modeling. J. Rheol. (N. Y.) 2019, 63, 477–501. DOI: 10.1122/1.5055031.
  • Al-Sabagh, A. M. The Relevance HLB of Surfactants on the Stability of Asphalt Emulsion. Colloids Surfaces A Physicochem. Eng. Asp. 2002, 204, 73–83. DOI: 10.1016/S0927-7757(01)01115-3.
  • Eccleston, G. M. Structure and Rheology of Cetomacrogol Creams: The Influence of Alcohol Chain Length and Homologue Composition. J. Pharm. Pharmacol. 1977, 29, 157–162.
  • Schmidts, T.; Dobler, D.; Guldan, A.-C.; Paulus, N.; Runkel, F. Multiple W/O/W Emulsions—Using the Required HLB for Emulsifier Evaluation. Colloids Surfaces A Physicochem. Eng. Asp. 2010, 372, 48–54. DOI: 10.1016/j.colsurfa.2010.09.025.
  • Jiao, J. Polyoxyethylated Nonionic Surfactants and Their Applications in Topical Ocular Drug Delivery. Adv. Drug Deliv. Rev. 2008, 60, 1663–1673.
  • Bujak, T.; Zagórska-Dziok, M.; Nizioł-Łukaszewska, Z. Complexes of Ectoine with the Anionic Surfactants as Active Ingredients of Cleansing Cosmetics with Reduced Irritating Potential. Molecules 2020, 25, 1433. DOI: 10.3390/molecules25061433.
  • Shinoda, K.; Yoneyama, T.; Tsutsumi, H. Evaluation of Emulsifier Blending. J. Dispers. Sci. Technol. 1980, 1, 1–12. DOI: 10.1080/01932698008962158.
  • Prince, L. M. A Theory of Aqueous Emulsions I. Negative Interfacial Tension at the Oil/Water Interface. J. Colloid Interface Sci. 1967, 23, 165–173. DOI: 10.1016/0021-9797(67)90099-9.
  • Boyd, J.; Parkinson, C.; Sherman, P. Factors Affecting Emulsion Stability, and the HLB Concept. J. Colloid Interface Sci. 1972, 41, 359–370. DOI: 10.1016/0021-9797(72)90122-1.
  • Eccleston, G. M. Functions of Mixed Emulsifiers and Emulsifying Waxes in Dermatological Lotions and Creams. Colloids Surfaces A Physicochem. Eng. Asp. 1997, 123, 169–182.
  • Gong, H.; Yu, B.; Zhang, X.; Peng, Y.; Liu, Y. Structural Optimization of a Demulsification and Dewatering Device Coupled with Swirl Centrifugal and High-Voltage Fields by Response Surface Methodology Combined with Numerical Simulation. Chem. Eng. Res. Des. 2019, 148, 361–374. DOI: 10.1016/j.cherd.2019.06.023.
  • Zhang, Z.; Xu, G.; Wang, F.; Du, G. Aggregation Behaviors and Interfacial Properties of Oxyethylated Nonionic Surfactants. J. Dispers. Sci. Technol. 2005, 26, 297–302. DOI: 10.1081/DIS-200049580.
  • Jiao, J.; Burgess, D. J. Rheology and Stability of Water-in-Oil-in-Water Multiple Emulsions Containing Span 83 and Tween 80. AAPS PharmSci. 2003, 5, 62–73. DOI: 10.1208/ps050107.
  • Bahloul, B.; Lassoued, M. A.; Sfar, S. A Novel Approach for the Development and Optimization of Self Emulsifying Drug Delivery System Using HLB and Response Surface Methodology: Application to Fenofibrate Encapsulation. Int. J. Pharm. 2014, 466, 341–348.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.