295
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Removal of methylene blue using a novel generation photocatalyst based on nano-SnO2/wild plumb kernel shell biochar composite

& ORCID Icon
Pages 2748-2759 | Received 22 Apr 2022, Accepted 03 Nov 2022, Published online: 21 Nov 2022

References

  • Singh, J.; Sharma, S.; Basu.; S.; Aanchal. Synthesis of Fe2O3/TiO2 Monoliths for the Enhanced Degradation of Industrial Dye and Pesticide via photo-Fenton Catalysis. J. Photochem. Photobiol. A 2019, 376, 32–42. DOI: 10.1016/j.jphotochem.2019.03.004.
  • Ahmad, K.; Ghatak, H. R.; Ahuja, S. A Review on Photocatalytic Remediation of Environmental Pollutants and H2 Production through Water Splitting: A Sustainable Approach. Environ. Technol. Innovat. 2020, 19, 100893. DOI: 10.1016/j.eti.2020.100893.
  • Saratale, G. D.; Saratale, R. G.; Chang, J. S.; Govindwar, S. P. Fixed-Bed Decolorization of Reactive Blue 172 by Proteus vulgaris NCIM-2027 Immobilized on Luffa Cylindrica Sponge. Int. Biodeterior. Biodegrad. 2011, 65, 494–503. DOI: 10.1016/j.ibiod.2011.01.012.
  • Zubair, M.; Mu’azu, N. D.; Jarrah, N.; Blaisi, N. I.; Aziz, H. A.; A Al-Harthi, M. Adsorption Behavior and Mechanism of Methylene Blue, Crystal Violet, Eriochrome Black T, and Methyl Orange Dyes onto Biochar-Derived Date Palm Fronds Waste Produced at Different Pyrolysis Conditions. Water Air Soil Pollut. 2020, 231, 1–19. DOI: 10.1007/s11270-020-04595-x.
  • Yang, L.; Zhao, Z.; Wang, H.; Dong, J.; Wang, L.; Zhou, Q.; Wan, X.; Zhao, R.; Cai, Z. Synthesis of ZnO/ZnS Core/Shell Microsphere and Its Photocatalytic Activity for Methylene Blue and Eosin Dyes Degradation. J. Dispersion Sci. Technol. 2020, 41, 2152–2158. DOI: 10.1080/01932691.2019.1653768.
  • Kishor, R.; Saratale, G. D.; Saratale, R. G.; Ferreira, L. F. R.; Bilal, M.; Iqbal, H. M.; Bharagava, R. N. Efficient Degradation and Detoxification of Methylene Blue Dye by a Newly Isolated Ligninolytic Enzyme Producing Bacterium Bacillus Albus MW407057. Colloids Surf. B Biointerfaces 2021, 206, 111947. DOI: 10.1016/j.colsurfb.2021.111947.
  • Ji, B.; Zhu, L.; Song, H.; Chen, W.; Guo, S.; Chen, F. Adsorption of Methylene Blue onto Novel Biochars Prepared from Magnolia grandiflora Linn Fallen Leaves at Three Pyrolysis Temperatures. Water Air Soil Pollut. 2019, 230, 1–11. DOI: 10.1007/s11270-019-4330-7.
  • He, Y.; Wang, Y.; Hu, J.; Wang, K.; Zhai, Y.; Chen, Y.; Duan, Y.; Wang, Y.; Zhang, W. Photocatalytic Property Correlated with Microstructural Evolution of the Biochar/ZnO Composites. J. Mater. Res. Technol. 2021, 11, 1308–1321. DOI: 10.1016/j.jmrt.2021.01.077.
  • Dbik, A.; Bentahar, S.; El Khomri, M.; El Messaoudi, N.; Lacherai, A. Adsorption of Congo Red Dye from Aqueous Solutions Using Tunics of the Corm of the Saffron. Mater. Today: Proc. 2020, 22, 134–139. DOI: 10.1016/j.matpr.2019.08.148.
  • Ike, I. A.; Lee, Y.; Hur, J. Impacts of Advanced Oxidation Processes on Disinfection Byproducts from Dissolved Organic Matter upon Post-Chlor (Am) Ination: A Critical Review. Chem. Eng. J. 2019, 375, 121929. DOI: 10.1016/j.cej.2019.121929.
  • Abou Dalle, A.; Domergue, L.; Fourcade, F.; Assadi, A. A.; Djelal, H.; Lendormi, T.; Soutrel, I.; Taha, S.; Amrane, A. Efficiency of DMSO as Hydroxyl Radical Probe in an Electrochemical Advanced Oxidation Process–Reactive Oxygen Species Monitoring and Impact of the Current Density. Electrochim. Acta 2017, 246, 1–8. DOI: 10.1016/j.electacta.2017.06.024.
  • Tyagi, I.; Singh, P.; Karri, R. R.; Dehghani, M. H.; Goscianska, J.; Tyagi, K.; Kumar, V. J. S.; Pollutants, R. N. Sustainable materials for sensing and remediation of toxic pollutants: An overview. In Sustainable Materials for Sensing and Remediation of Noxious Pollutants; Elsevier: Amsterdam, 2022, 1–14.
  • Chaudhary, M.; Tyagi, I.; Chaudhary, S.; Kushwaha, S.; Kumar, A. Novel Hydrochar as Low-Cost Alternative Adsorbent for the Removal of Noxious Impurities from Water. In Sustainable Materials for Sensing and Remediation of Noxious Pollutants; Elsevier: Amsterdam, 2022; 149–160.
  • Chaudhary, M.; Tyagi, I.; Kumar, R.; Kumar, V.; Chaudhary, S.; Kushwaha, S. Nano-Sorbents: A Promising Alternative for the Remediation of Noxious Pollutants. In Sustainable Materials for Sensing and Remediation of Noxious Pollutants; Elsevier: Amsterdam, 2022; 113–128.
  • Yang, Y.; Jin, H.; Liu, R.; Gan, H.; Wei, X. Dispersion of Ag–AgBr Particles in Activated Carbon as a Recyclable Photocatalyst for Adsorption and Degradation of Pollutants. J. Dispersion Sci. Technol. 2020, 41, 81–91. DOI: 10.1080/01932691.2018.1554488.
  • Creamer, A. E.; Gao, B.; Zhang, M. Carbon Dioxide Capture Using Biochar Produced from Sugarcane Bagasse and Hickory Wood. Chem. Eng. J. 2014, 249, 174–179. DOI: 10.1016/j.cej.2014.03.105.
  • Ahmaruzzaman, M. Biochar Based Nanocomposites for Photocatalytic Degradation of Emerging Organic Pollutants from Water and Wastewater. Mater. Res. Bull. 2021, 140, 111262. DOI: 10.1016/j.materresbull.2021.111262.
  • Braghiroli, F. L.; Bouafif, H.; Neculita, C. M.; Koubaa, A. Activated Biochar as an Effective Sorbent for Organic and Inorganic Contaminants in Water. Water Air Soil Pollut. 2018, 229, 1–22. DOI: 10.1007/s11270-018-3889-8.
  • Gümüş, D.; Akbal, F. Photocatalytic Degradation of Textile Dye and Wastewater. Water Air Soil Pollut. 2011, 216, 117–124. DOI: 10.1007/s11270-010-0520-z.
  • Peng, Y.; Guo, X.; Yang, J.; Xie, T.; Wang, J.; Wang, Y.; Liu, S. Design of a α‐Fe2O3/SiC Heterojunction to Improve Photocatalytic Performance through a Z-Scheme Electronic Transfer. J. Dispersion Sci. Technol. 2022, 43, 629–638. DOI: 10.1080/01932691.2020.1844734.
  • Neon, M. H. K.; Islam, M. S. MoO3 and Ag co-Synthesized TiO2 as a Novel Heterogeneous Photocatalyst with Enhanced Visible-Light-Driven Photocatalytic Activity for Methyl Orange Dye Degradation. Environ. Nanotechnol. Monitor.Manag. 2019, 12, 100244. DOI: 10.1016/j.enmm.2019.100244.
  • Wei, X.; Wang, X.; Gao, B.; Zou, W.; Dong, L. Facile Ball-Milling Synthesis of CuO/Biochar Nanocomposites for Efficient Removal of Reactive Red 120. ACS Omega. 2020, 5, 5748–5755. DOI: 10.1021/acsomega.9b03787.
  • Qin, Y.; Zhang, H.; Tong, Z.; Song, Z.; Chen, N. A Facile Synthesis of Fe3O4@ SiO2@ ZnO with Superior Photocatalytic Performance of 4-Nitrophenol. J. Environ. Chem. Eng. 2017, 5, 2207–2213. DOI: 10.1016/j.jece.2017.04.036.
  • Pehlivan, E.; Parlayıcı, Ş. Fabrication of a Novel Biopolymer-Based Nanocomposite (nanoTiO2-Chitosan-Plum Kernel Shell) and Adsorption of Cationic Dyes. J. Chem. Technol. Biotechnol. 2021, 96, 3378–3387. DOI: 10.1002/jctb.6893.
  • Keles, E.; Yildirim, M.; Öztürk, T.; Yildirim, Altintas Yildirim, O. Hydrothermally Synthesized UV Light Active Zinc Stannate:tin Oxide (ZTO:SnO2) Nanocomposite Photocatalysts for Photocatalytic Applications. Mater. Sci. Semicond. Process. 2020, 110, 104959. DOI: 10.1016/j.mssp.2020.104959.
  • Baylan, E.; Altintas Yildirim, O. Highly Efficient Photocatalytic Activity of Stable Manganese-Doped Zinc Oxide (Mn:ZnO) Nanofibers via Electrospinning Method. Mater. Sci. Semicond. Process. 2019, 103, 104621. DOI: 10.1016/j.mssp.2019.104621.
  • Mishra, G.; Parida, K.; Singh, S. Solar Light Driven Rhodamine B Degradation over Highly Active β-SiC–TiO 2 Nanocomposite. RSC Adv. 2014, 4, 12918–12928. DOI: 10.1039/C3RA46578K.
  • Zhang, X.; Yuan, J.; Zhu, J.; Fan, L.; Chen, H.; He, H.; Wang, Q. Visible Light Photocatalytic Performance of Laser-Modified TiO2/SnO2 Powders Decorated with SiC Nanocrystals. Ceram. Int 2019, 45, 12449–12454. DOI: 10.1016/j.ceramint.2019.03.178.
  • Begum, S.; Ahmaruzzaman, M. Biogenic Synthesis of SnO2/Activated Carbon Nanocomposite and Its Application as Photocatalyst in the Degradation of Naproxen. Appl. Surf. Sci. 2018, 449, 780–789. DOI: 10.1016/j.apsusc.2018.02.069.
  • Li, R.; Wang, J. J.; Gaston, L. A.; Zhou, B.; Li, M.; Xiao, R.; Wang, Q.; Zhang, Z.; Huang, H.; Liang, W.; et al. An Overview of Carbothermal Synthesis of Metal–Biochar Composites for the Removal of Oxyanion Contaminants from Aqueous Solution. Carbon 2018, 129, 674–687. DOI: 10.1016/j.carbon.2017.12.070.
  • Xiang, W.; Zhang, X.; Chen, J.; Zou, W.; He, F.; Hu, X.; Tsang, D. C.; Ok, Y. S.; Gao, B. Biochar Technology in Wastewater Treatment: A Critical Review. Chemosphere 2020, 252, 126539. DOI: 10.1016/j.chemosphere.2020.126539.
  • Zou, H.; Zhao, J.; He, F.; Zhong, Z.; Huang, J.; Zheng, Y.; Zhang, Y.; Yang, Y.; Yu, F.; Bashir, M. A.; Gao, B. Ball Milling Biochar Iron Oxide Composites for the Removal of Chromium (Cr (VI)) from Water: Performance and Mechanisms. J. Hazard Mater. 2021, 413, 125252. DOI: 10.1016/j.jhazmat.2021.125252.
  • Gonçalves, M. G.; da Silva Veiga, P. A.; Fornari, M. R.; Peralta-Zamora, P.; Mangrich, A. S.; Silvestri, S. Relationship of the Physicochemical Properties of Novel ZnO/Biochar Composites to Their Efficiencies in the Degradation of Sulfamethoxazole and Methyl Orange. Sci. Total Environ. 2020, 748, 141381. DOI: 10.1016/j.scitotenv.2020.141381.
  • Bhakta, N.; Chakrabarti, P. K. XRD Analysis, Raman, AC Conductivity and Dielectric Properties of Co and Mn co-Doped SnO2 Nanoparticles. Appl. Phys. A 2019, 125, 73. DOI: 10.1007/s00339-018-2370-2.
  • Senthilkumar, V.; Vickraman, P.; Jayachandran, M.; Sanjeeviraja, C. Synthesis and Characterization of SnO2 Nanopowder Prepared by Precipitation Method. J. Dispersion Sci. Technol. 2010, 31, 1178–1181. DOI: 10.1080/01932690903223856.
  • Waqas, M.; Aburiazaiza, A. S.; Miandad, R.; Rehan, M.; Barakat, M. A.; Nizami, A. S. Development of Biochar as Fuel and Catalyst in Energy Recovery Technologies. J. Cleaner Prod. 2018, 188, 477–488. DOI: 10.1016/j.jclepro.2018.04.017.
  • Zhang, B.; Tian, Y.; Zhang, J. X.; Cai, W. The FTIR Studies of SnO2:Sb(ATO) Films Deposited by Spray Pyrolysis. Mater. Lett. 2011, 65, 1204–1206. DOI: 10.1016/j.matlet.2011.01.052.
  • Gonçalves, N. P.; Lourenço, M. A.; Baleuri, S. R.; Bianco, S.; Jagdale, P.; Calza, P. Biochar Waste-Based ZnO Materials as Highly Efficient Photocatalysts for Water Treatment. J. Environ. Chem. Eng. 2022, 10, 107256. DOI: 10.1016/j.jece.2022.107256.
  • Mao, W.; Zhang, L.; Liu, Y.; Wang, T.; Bai, Y.; Guan, Y. Facile Assembled N, S-Codoped Corn Straw Biochar Loaded Bi2WO6 with the Enhanced Electron-Rich Feature for the Efficient Photocatalytic Removal of Ciprofloxacin and Cr (VI). Chemosphere 2021, 263, 127988. DOI: 10.1016/j.chemosphere.2020.127988.
  • Usman, A. R.; Abduljabbar, A.; Vithanage, M.; Ok, Y. S.; Ahmad, M.; Ahmad, M.; Elfaki, J.; Abdulazeem, S. S.; Al-Wabel, M. I. Biochar Production from Date Palm Waste: charring Temperature Induced Changes in Composition and Surface Chemistry. J. Anal. Appl. Pyrol. 2015, 115, 392–400. DOI: 10.1016/j.jaap.2015.08.016.
  • Rashidi, N. A.; Yusup, S. Biochar as Potential Precursors for Activated Carbon Production: parametric Analysis and Multi-Response Optimization. Environ. Sci. Pollut. Res. Int. 2020, 27, 27480–27490. DOI: 10.1007/s11356-019-07448-1.
  • Yu, S.; Wang, J.; Cui, J. Preparation of a novel chitosan-based magnetic adsorbent CTS@ SnO2@ Fe3O4 for effective treatment of dye wastewater. Int. J. Biol. Macromol. 2020, 156, 1474–1482. DOI: 10.1016/j.ijbiomac.2019.11.194.
  • Ersöz, E.; Altintas Yildirim, O. Green Synthesis and Characterization of Ag-Doped ZnO Nanofibers for Photodegradation of MB, RhB and MO Dye Molecules. J. Korean Ceram. Soc. 2022, 59, 655–670. DOI: 10.1007/s43207-022-00202-3.
  • Shan, R.; Lu, L.; Gu, J.; Zhang, Y.; Yuan, H.; Chen, Y.; Luo, B.; J.; M.; S.; i.;.; S.; P. Photocatalytic Degradation of Methyl Orange by Ag/TiO2/Biochar Composite Catalysts in Aqueous Solutions. Mater. Sci.Semiconductor Process. 2020, 114, 105088. DOI: 10.1016/j.mssp.2020.105088.
  • Lazarotto, J. S.; Lima Brombilla, V.; Silvestri, S.; Foletto, E. L. Conversion of Spent Coffee Grounds to Biochar as Promising TiO2 Support for Effective Degradation of Diclofenac in Water. Appl. Organomet. Chem. 2020, 34, e6001. DOI: 10.1002/aoc.6001.
  • Mejía, E.; Ospina, J.; Osorno, L.; Márquez, M.; Morales, A. Mineralogical Characterization of Chalcopyrite Bioleaching, In Fourier Transform: Signal Processing and Physical Sciences, Intech, 2015, 197–213.
  • Colmenares, J. C.; Varma, R. S.; Lisowski, P. Sustainable Hybrid Photocatalysts: titania Immobilized on Carbon Materials Derived from Renewable and Biodegradable Resources. Green Chem. 2016, 18, 5736–5750. DOI: 10.1039/C6GC02477G.
  • Alhaddad, M.; Shawky, A. Superior Photooxidative Desulfurization of Thiophene by Reduced Graphene Oxide-Supported MoS2 Nanoflakes under Visible Light. Fuel Process. Technol. 2020, 205, 106453. DOI: 10.1016/j.fuproc.2020.106453.
  • Mondol, B.; Sarker, A.; Shareque, A.; Dey, S. C.; Islam, M. T.; Das, A. K.; Shamsuddin, S. M.; Molla, M.; Islam, A.; Sarker, M. Preparation of Activated Carbon/TiO2 Nanohybrids for Photodegradation of Reactive Red-35 Dye Using Sunlight. Photochemistry 2021, 1, 54–66. DOI: 10.3390/photochem1010006.
  • Chen, M.; Bao, C.; Hu, D.; Jin, X.; Huang, Q. Facile and Low-Cost Fabrication of ZnO/Biochar Nanocomposites from Jute Fibers for Efficient and Stable Photodegradation of Methylene Blue Dye. J. Anal. Appl. Pyrolysis 2019, 139, 319–332. DOI: 10.1016/j.jaap.2019.03.009.
  • Li, Y.; Zimmerman, A. R.; He, F.; Chen, J.; Han, L.; Chen, H.; Hu, X.; Gao, B. Solvent-Free Synthesis of Magnetic Biochar and Activated Carbon through Ball-Mill Extrusion with Fe3O4 Nanoparticles for Enhancing Adsorption of Methylene Blue. Sci. Total Environ. 2020, 722, 137972. DOI: 10.1016/j.scitotenv.2020.137972.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.