185
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

NMR investigation of counterion binding to undecyl LL-leucinevalanate micelles

, , , , , , , & show all
Pages 284-295 | Received 11 Aug 2022, Accepted 03 Nov 2022, Published online: 13 Dec 2022

References

  • Mikami, N.; Oota, R. Testing and Developing a Sugar-Derived Surfactant Blend for Delicate Skin. SOFW J. 2008, 134, 27–32. https://www.cosmeticsandtoiletries.com/testing/sensory/article/21835221/testing-and-developing-a-sugarderived-surfactant-blend-for-delicate-skin
  • Bettenhausen, C. Switching to Sustainable Surfactants. Chem. Eng. News 2022, 100. 1–12. https://cen.acs.org/business/specialty-chemicals/Switching-sustainable-surfactants/100/i15
  • Bordes, R.; Holmberg, K. Amino Acid Based Surfactants-Do They Deserve More Attention. Adv. Colloid. Interface Sci. 2015, 222, 79–91. DOI: 10.1126/sciadv.aao6494.
  • Chandra, N.; Tyagi, V. K. Synthesis, Properties, and Applications of Amino Acids Based Surfactants: A Review. J. Dispers. Sci. Technol. 2013, 34, 800–808. DOI: 10.1080/01932691.2012.695967.
  • Pinazo, A.; Pons, R.; Pérez, L.; Infante, M. R. Amino Acids as Raw Materials for Biocompatable Surfactants. Ind. Eng. Chem. Res. 2011, 50, 4805–4817. DOI: 10.1021/ie1014348.
  • Greber, K. E. Synthesis and Surface Activity of Cationic Amino Acid Based Surfactants in Aqueous Solution. J. Surfactants Deterg. 2017, 20, 1189–1196. DOI: 10.1007/s11743-017-2002-4.
  • Tadros, T. Surfactants. In Encyclopedia of Colloid and Interface Science, Tadros, T., Eds.; Springer: Berlin, Heidelberg, 2013; pp 1242–1290. https://doi.org/10.1007/978-3-642-20665-8_40
  • Pinheiro, L.; Faustino, C. Amino Acid Based Surfactants for Biomedical Applications; Najjar, R., Eds. InTechOpen: London, 2016. https://www.intechopen.com/chapters/54704. DOI: 10.5772/67977.
  • Pinazo, A.; Manresa, M. A.; Marques, A. M.; Bustelo, M.; Espuny, M. J.; Perez, L. Amino Acid Based Surfactants: New Antimicrobial Agents. Adv. Colloid Interface Sci. 2016, 228, 17–39. DOI: 10.1016/j.cis.2015.11.007.
  • Billiot, E. J.; Macossay, J.; Thibodeaux, S.; Shamsi, S. A.; Warner, I. M. Chiral Separations Using Dipeptide Polymerized Surfactants: Effect of Amino Acid Order. Anal. Chem. 1998, 70, 1375–1381. DOI: 10.1021/Ac9709561.
  • Shamsi, S. A.; Valle, B. C.; Billiot, F. H.; Warner, I. M. Polysodium N-undecanoyl-L-Leucylvalinate: A Versatile Chiral Selector for Micellar Electrokinetic Chromatography. Anal. Chem. 2003, 75, 379–387. DOI: 10.1021/Ac020386R.
  • Morris, K. F.; Froberg, A. L.; Becker, B. A.; Almeida, V. K.; Tarus, J.; Larive, C. K. Using NMR to Develop Insights into Electrokinetic Chromatography. Anal. Chem. 2005, 77, 254A–263A. DOI: 10.1021/ac0534071.
  • Morris, K. F.; Billiot, E. J.; Billiot, F. H.; Lipkowitz, K. B.; Southerland, W. M.; Gladis, A. A.; Fang, Y. A Molecular Dynamics Simulation Study of the Association of 1,1′-Binaphthyl-2, 2′-Diyl Hydrogenphosphate Enantiomers with a Chiral Molecular Micelle. Chem. Phys. 2014, 439, 36–43. DOI: 10.1016/j.chemphys.2014.05.004.
  • Morris, K. F.; Billiot, E. J.; Billiot, F. H.; Hoffman, C. B.; Gladis, A. A.; Lipkowitz, K. B.; Southerland, W. H.; Fang, Y. Molecular Dynamics Simulation and NMR Investigation of the Association of the β-Blockers Atenolol and Propranolol with a Chiral Molecular Micelle. Chem. Phys. 2015, 457, 133–146. DOI: 10.1016/j.chemphys.2015.05.024.
  • Rugutt, J. K.; Billiot, E., J.; Warner, I. M. NMR Study of the Interaction of Monomeric and Polymeric Chiral Surfactants with (R)- and (S)-1,1‘-Binaphthyl-2,2‘-Diyl Hydrogen Phosphate. Langmuir 2000, 16, 3022–3029. DOI: 10.1021/la990539e.
  • McCarroll, M. E.; Billiot, F. H.; Warner, I. M. Fluorescence Anisotropy as a Measure of Chiral Recognition. J. Am. Chem. Soc. 2001, 123, 3173–3174. DOI: 10.1021/ja005604h.
  • Kimaru, I. W.; Xu, Y.; McCarroll, M. E. Characterization of Chiral Interactions Using Fluorescence Anisotropy. Anal. Chem. 2006, 78, 8485–8490. DOI: 10.1021/ac061335n.
  • Jansson, M.; Stilbs, P. A Comparative Study of Organic Counterion Binding to Micelles with the Fourier Transform NMR Self-Diffusion Technique. J. Phys. Chem. 1985, 89, 4868–4873. DOI: 10.1021/j100268a042.
  • Koyama, M. Effect of Arginine as a Counterion on Surfactant Properties of Fatty Acid Salts. J. Dispers. Sci. Technol. 2005, 26, 785–789. DOI: 10.1081/DIS-200063107.
  • Lima, F. S.; Cuccovia, I. M.; Horinek, D.; Amaral, L. Q.; Riske, K. A.; Schreier, S.; Salinas, R. K.; Bastos, E. L.; Pires, P. A. R.; Bozelli, J. C.; et al. Effect of Counterions on the Shape, Hydration, and Degree of Order at the Interface of Cationic Micelles: The Triflate Case. Langmuir 2013, 29, 4193–4203. DOI: 10.1021/la304658e.
  • Fernandez-Alvarez, R.; Nová, L.; Uhlík, F.; Kereïche, S.; Uchman, M.; Košovan, P.; Matějíček, P. Interactions of Star-Like Polyelectrolyte Micelles with Hydrophobic Counterions. J. Colloid Interface Sci. 2019, 546, 371–380. DOI: 10.1016/j.jcis.2019.03.054.
  • Talens-Alesson, F. The Role of Ionic Pair Association on Micellization and Counterion Binding in Ionic Micelles. J. Phys. Chem. B 2009, 113, 9779–9785. DOI: 10.1021/jp900928c.
  • Rashidi-Alavijeh, M.; Javadian, S.; Gharibi, H.; Moradi, M.; Tehrani-Bagha, A. R.; Shahir, A. A. Intermolecular Interactions between a Dye and Cationic Surfactants: Effects of Alkyl Chain, Head Group, and Counterion. Colloid Surf. A 2011, 380, 119–127. DOI: 10.1016/j.colsurfa.2011.02.011.
  • Gnezdilov, O. I.; Zuev, Y. F.; Zueva, O. S.; Potarikina, K. S.; Us’yarov, O. G. Self-Diffusion of Ionic Surfactants and Counterions in Premicellar and Micellar Solutions of Sodium, Lithium and Cesium Dodecyl Sulfates as Studied by NMR-Diffusometry. Appl. Magn. Reson. 2011, 40, 91–103. DOI: 10.1007/s00723-010-0185-1.
  • Zuev, Y. F.; Gnezdilov, O. I.; Zueva, O. S.; Us’yarov, O. G. Effective Self-Diffusion Coefficients of Ions in Sodium Dodecyl Sulfate Micellar Solutions. Colloid. J. 2011, 73, 59–64. DOI: 10.1134/S1061933X11010224.
  • Ramos, Z.; Rothbauer, G. A.; Turner, J.; Lewis, C.; Morris, K. F.; Billiot, E. J.; Billiot, F. H.; Fang, Y. Comparison of Chiral Recognition of Binaphthyl Derivatives with L-Undecyl-Leucine Surfactants in the Presence of Arginine and Sodium Counterions. J. Chromatogr. Sci. 2019, 57, 54–62. DOI: 10.1093/chromsci/bmy080.
  • Garcia, M.; Risley, A.; Billiot, F. H.; Billiot, E. J.; Morris, K. F. Chiral Recognition of Binaphthyl Derivatives with L-Undecyl Leucine Surfactants in the Presence of Sodium and Lysine Counterions. Am. J. Anal. Chem. 2021, 12, 188–201. DOI: 10.4236/ajac.2021.125012.
  • Lewis, C.; Hughes, B. H.; Vasquez, M.; Wall, A. M.; Northrup, V. L.; Witzleb, T. J.; Billiot, E. J.; Fang, Y.; Billiot, F. H.; Morris, K. F. Effect of pH on the Binding of Sodium, Lysine, and Arginine Counterions to L-Undecyl Leucinate Micelles. J. Surfact Deterg. 2016, 19, 1175–1188. DOI: 10.1007/s11743-016-1875-y.
  • Rothbauer, G. A.; Rutter, E. A.; Reuter-Seng, C.; Vera, S.; Billiot, E. J.; Fang, Y.; Billiot, F. H.; Morris, K. F. Nuclear Magnetic Resonance Investigation of the Effect of pH on Micelle Formation by the Amino Acid-Based Surfactant Undecyl l-Phenylalaninate. J. Surfactants Deterg. 2018, 21, 139–153. DOI: 10.1002/jsde.12015.
  • Stilbs, P. Fourier Transform Pulsed-Gradient Spin-Echo Studies of Molecular Diffusion. Prog. Nucl. Mag. Reason. Spectrosc. 1987, 19, 1–45. DOI: 10.1016/0079-6565(87)80007-9.
  • Wong, T. C. Micellar Systems: Nuclear Magnetic Resonance Spectroscopy. In Encyclopedia of Surface and Colloid Science; Taylor & Francis: Boca Raton, FL, 2006. DOI: 10.1081/E-ESCS-120023321.
  • Evans, R.; Hernandez-Cid, A.; Dal Poggetto, G.; Vesty, A.; Haiber, S.; Morris, G. A.; Nilsson, M. Matrix-Assisted Diffusion-Ordered NMR Spectroscopy with an Invisible Matrix: A Vanishing Surfactant. RSC Adv. 2017, 7, 449–452. DOI: 10.1039/C6RA26144B.
  • D'Errico, G.; Ortona, O.; Paduano, L.; Vitagliano, V. Transport Properties of Aqueous Solutions of Alkyltrimethylammonium Bromide Surfactants at 25 °C. J. Colloid Interface Sci. 2001, 239, 264–271. DOI: 10.1006/jcis.2001.7555.
  • Chachaty, C. Applications of NMR Methods to the Physical Chemistry of Micellar Solutions. Prog. Nucl. Magn. Reason. Spectrosc. 1987, 19, 183–222. DOI: 10.1016/0079-6565(87)80002-X.
  • Stilbs, P. Diffusion and Electrophoretic NMR; Walter de Gruyter: Boston, MA, 2019. DOI: 10.1515/9783110551532.
  • Wu, D.; Chen, A.; Johnson, C. S. Jr., An Improved Diffusion-Ordered Spectroscopy Experiment Incorporating Bipolar-Gradient Pulses. J. Magn. Reson 1995, 115, 260–264. DOI: 10.1006/jmra.1995.1176.
  • Bax, A.; Davis, D. G. Practical Aspects of Two-Dimensional Transverse NOE Spectroscopy. J. Magn. Reason 1985, 63, 207–213. DOI: 10.1016/0022-2364(85)90171-4.
  • Piotto, M.; Saudek, V.; Sklenár, V. Gradient-Tailored Excitation for Single-Quantum NMR Spectroscopy of Aqueous Solutions. J. Biomol. NMR 1992, 2, 661–665. DOI: 10.1007/BF02192855.
  • Wilkins, D. K.; Grimshaw, S. B.; Receveur, V.; Dobson, C. M.; Jones, J. A.; Smith, L. J. Hydrodynamic Radii of Native and Denatured Proteins Measured by Pulse Field Gradient NMR Techniques. Biochemistry 1999, 38, 16424–16431. DOI: 10.1021/bi991765q.
  • CRC Handbook of Chemistry and Physics; 103rd ed.; Rumble, J., Ed. CRC Press, Boca Raton, FL, 2021. DOI: 10.1021/ja041017a.
  • Ammalahti, E.; Bardet, M.; Molko, D.; Cadet, J. Evaluation of Distances from ROESY Experiments with the Intensity-Ratio Method. J. Magn. Reason. A 1996, 122, 230–232. DOI: 10.1006/jmra.1996.0199.
  • Hilton, B. D.; Chmurny, G. N.; Muschik, G. M. Taxol: Quantitative Internuclear Proton-Proton Distances in CDCl3 Solution from nOe Data: 2D NMR Roesy Buildup Rates at 500 MHz. J. Nat. Prod. 1992, 55, 1157–1161. DOI: 10.1021/np50086a023.
  • Ganjiwale, A.; Cowsik, S. M. Membrane-Induced Structure of Novel Human Tachykinin Hemokinin-1 (hHK1). Biopolymers 2015, 103, 702–710. DOI: 10.1002/bip.22734.
  • Jeannerat, D.; Furrer, J. NMR Experiments for the Analysis of Mixtures: Beyond 1D 1H Spectra. Comb. Chem. High Throughput Screen 2012, 15, 15–35. DOI: 10.2174/138620712798280853.
  • Pessine, F. B. T.; Calderini, A.; Alexandrino, G. L. Magnetic Resonance Spectroscopy; Kim, D., Ed.; IntechOpen: London, 2011. www.intechopen.com/chapters/30457. DOI: 10.5772/1228.
  • Fernandes, S. A.; Cabeca, L. F.; Marsaioli, A. J.; Paula, E. Investigation of Tetracaine Complexation with Beta-Cyclodextrins and p-Sulphonic Acid Calix[6]Arenes by nOe and PGSE NMR. J. Incl. Phenom. Macrocycl. Chem. 2007, 57, 395–401. DOI: 10.1007/s10847-006-9224-9.
  • Armarego, W. L. F.; Chai, C. L. L. Purification of Lab Chemicals; 6th ed.; Elsevier, Burlington, VT, 2009. www.intechopen.com/chapters/30457. DOI: 10.1016/C2009-0-64000-9.
  • Lopes Jesus, J.; Helena, M.; Teixeira, S. F.; Redinha, J. S. Structure of Charged Cyclohexyldiamines in Aqueous Solution: A Theoretical and Experimental Study. J. Phys. Chem. B 2012, 116, 5019–5027. DOI: 10.1021/jp3011712.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.