55
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

(Un)coupling the factors contributing to the interfacial activation of Streptomyces rimosus lipase: computational and spectrophotometric study

, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 296-306 | Received 29 Sep 2022, Accepted 03 Nov 2022, Published online: 14 Nov 2022

References

  • Macrae, A. R.; Hammond, R. C. Present and Future Applications of Lipases. Biotechnol. Genet. Eng. Rev. 1985, 3, 193–218. DOI: 10.1080/02648725.1985.10647813.
  • Abramić, M.; Leščić, I.; Korica, T.; Vitale, L.; Saenger, W.; Pigac, J. Purification and Properties of Extracellular Lipase from Streptomyces rimosus. Enzyme Microb. Technol. 1999, 25, 522–529. DOI: 10.1016/S0141-0229(99)00077-0.
  • Khan, F. I.; Lan, D.; Durrani, R.; Huan, W.; Zhao, Z.; Wang, Y. The Lid Domain in Lipases: Structural and Functional Determinant of Enzymatic Properties. Front Bioeng. Biotechnol. 2017, 5, 16. DOI: 10.3389/fbioe.2017.00016.
  • Gupta, R.; Gupta, N.; Rathi, P. Bacterial Lipases: An Overview of Production, Purification and Biochemical Properties. Appl. Microbiol. Biotechnol. 2004, 64, 763–781. DOI: 10.1007/s00253-004-1568-8.
  • Ramnath, L.; Sithole, B.; Govinden, R. Classification of Lipolytic Enzymes and Their Biotechnological Applications in the Pulping Industry. Can. J. Microbiol. 2017, 63, 179–192. DOI: 10.1139/cjm-2016-0447.
  • Arpigny, J. L.; Jaeger, K. E. Bacterial Lipolytic Enzymes: Classification and Properties. Biochem. J. 1999, 343, 177–183. DOI: 10.1042/0264-6021:3430177.
  • Biđin, S.; Vujaklija, I.; Paradžik, T.; Bielen, A.; Vujaklija, D. Leitmotif: Protein Motif Scanning 2.0. Bioinformatics 2020, 36, 3566–3567. DOI: 10.1093/bioinformatics/btaa133.
  • Su, H. G.; Zhang, X. H.; Wang, T. T.; Wei, W. L.; Wang, Y. X.; Chen, J.; Zhou, Y.; Bin; Chen, M.; Ma, Y. Z.; Xu, Z. S.; Min, D. H. Genome-Wide Identification, Evolution, and Expression of GDSL-Type Esterase/Lipase Gene Family in Soybean. Front Plant Sci. 2020, 11, 726. DOI: 10.3389/fpls.2020.00726.
  • Vujaklija, D.; Schröder, W.; Abramić, M.; Zou, P.; Leščić, I.; Franke, P.; Pigac, J. A Novel Streptomycete Lipase: Cloning, Sequencing and High-Level Expression of the Streptomyces rimosus GDS(L)-Lipase Gene. Arch Microbiol 2002, 178, 124–130. DOI: 10.1007/s00203-002-0430-6.
  • Vujaklija, I.; Bielen, A.; Paradžik, T.; Biđin, S.; Goldstein, P.; Vujaklija, D. An Effective Approach for Annotation of Protein Families with Low Sequence Similarity and Conserved Motifs: Identifying GDSL Hydrolases across the Plant Kingdom. BMC Bioinf. 2016, 17, 91. DOI: 10.1186/s12859-016-0919-7.
  • Vujaklija, D.; Abramić, M.; Leščić, I.; Maršić, T.; Pigac, J. Streptomyces rimosus GDS(L) Lipase: Production, Heterologous Overexpression and Structure-Stability Relationship. Food Technol. Biotechnol. 2003, 41, 89–93.
  • Zehl, M.; Leščić, I.; Abramíc, M.; Rizzi, A.; Kojić-Prodić, B.; Allmaier, G. Characterization of Covalently Inhibited Extracellular Lipase from Streptomyces rimosus by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight and Matrix-Assisted Laser Desorption/Ionization Quadrupole Ion Trap Reflectron Time-of-Flight Mass Spectr. J. Mass Spectrom 2004, 39, 1474–1483. DOI: 10.1002/jms.750.
  • Leščić Ašler, I.; Zehl, M.; Kovačić, F.; Müller, R.; Abramić, M.; Allmaier, G.; Kojić-Prodić, B. Mass Spectrometric Evidence of Covalently-Bound Tetrahydrolipstatin at the Catalytic Serine of Streptomyces rimosus Lipase. Biochimica et Biophysica Acta - General Subjects 2007, 1770, 163–170. DOI: 10.1016/j.bbagen.2006.10.011.
  • Leščić Ašler, I.; Štefanić, Z.; Maršavelski, A.; Vianello, R.; Kojić-Prodić, B. Catalytic Dyad in the SGNH Hydrolase Superfamily: In-Depth Insight into Structural Parameters Tuning the Catalytic Process of Extracellular Lipase from Streptomyces rimosus. ACS Chem. Biol. 2017, 12, 1928–1936. DOI: 10.1021/acschembio.6b01140.
  • Louwrier, A.; Drtina, G. J.; Klibanov, A. M. On the Issue of Interfacial Activation of Lipase in Nonaqueous Media. Biotechnol. Bioeng. 1996, 50, 1–5. DOI: 10.1002/(SICI)1097-0290(19960405)50:1 < 1::AID-BIT1 > 3.0.CO;2-L.
  • Verger, R. “Interfacial Activation” of Lipases: Facts and Artifacts. Trends Biotechnol. 1997, 15, 32–38. DOI: 10.1016/S0167-7799(96)10064-0.
  • Brzozowski, A. M.; Derewenda, U.; Derewenda, Z. S.; Dodson, G. G.; Lawson, D. M.; Turkenburg, J. P.; Bjorkling, F.; Huge-Jensen, B.; Patkar, S. A.; Thim, L. A Model for Interfacial Activation in Lipases from the Structure of a Fungal Lipase-Inhibitor Complex. Nature 1991, 351, 491–494. DOI: 10.1038/351491a0.
  • Mala, J. G. S.; Takeuchi, S. Understanding Structural Features of Microbial Lipases – An Overview. Anal Chem Insights 2008, 3, 9–19. DOI: 10.4137/aci.s551.
  • Adlercreutz, P. Immobilisation and Application of Lipases in Organic Media. Chem Soc Rev 2013, 42, 6406–6436. DOI: 10.1039/c3cs35446f.
  • Les˘c˘ić, I.; Vukelić, B.; Majerić-Elenkov, M.; Saenger, W.; Abramić, M. Substrate Specificity and Effects of Water-Miscible Solvents on the Activity and Stability of Extracellular Lipase from Streptomyces rimosus. Enzyme Microb. Technol. 2001, 29, 548–553. DOI: 10.1016/S0141-0229(01)00433-1.
  • Wickham, M.; Garrood, M.; Leney, J.; Wilson, P. D. G.; Fillery-Travis, A. Modification of a Phospholipid Stabilized Emulsion Interface by Bile Salt: Effect on Pancreatic Lipase Activity. J. Lipid. Res. 1998, 39, 623–632. DOI: 10.1016/S0022-2275(20)33300-9.
  • Reis, P.; Holmberg, K.; Watzke, H.; Leser, M. E.; Miller, R. Lipases at Interfaces: A Review. Adv. Colloid Interface Sci. 2009, 147–148, 237–250. DOI: 10.1016/j.cis.2008.06.001.
  • Skjold-Jørgensen, J.; Vind, J.; Svendsen, A.; Bjerrum, M. J. Altering the Activation Mechanism in Thermomyces Lanuginosus Lipase. Biochemistry 2014, 53, 4152–4160. DOI: 10.1021/bi500233h.
  • Burdette, R. A.; Quinn, D. M. Interfacial Reaction Dynamics and Acyl-Enzyme Mechanism for Lipoprotein Lipase-Catalyzed Hydrolysis of Lipid p-Nitrophenyl Esters. J. Biol. Chem. 1986, 261, 12016–12021. DOI: 10.1016/S0021-9258(18)67195-9.
  • Sanchez, C.; Schmitt, C.; Kolodziejczyk, E.; Lapp, A.; Gaillard, C.; Renard, D. The Acacia Gum Arabinogalactan Fraction is a Thin Oblate Ellipsoid: A New Model Based on Small-Angle Neutron Scattering and Ab Initio Calculation. Biophys. J. 2008, 94, 629–639. DOI: 10.1529/biophysj.107.109124.
  • Tiss, A.; Carrière, F.; Verger, R. Effects of Gum Arabic on Lipase Interfacial Binding and Activity. Anal. Biochem. 2001, 294, 36–43. DOI: 10.1006/abio.2001.5095.
  • Sethuraman, S.; Rajendran, K. Is Gum Arabic a Good Emulsifier Due to CH…π Interactions? How Urea Effectively Destabilizes the Hydrophobic CH…π Interactions in the Proteins of Gum Arabic than Amides and GuHCl? ACS Omega. 2019, 4, 16418–16428. DOI: 10.1021/acsomega.9b01980.
  • Rabelo, R. S.; Tavares, G. M.; Prata, A. S.; Hubinger, M. D. Complexation of Chitosan with Gum Arabic, Sodium Alginate and κ-Carrageenan: Effects of pH, Polymer Ratio and Salt Concentration. Carbohydr. Polym. 2019, 223, 115120. DOI: 10.1016/j.carbpol.2019.115120.
  • Bielen, A.; Ćetković, H.; Long, P. F.; Schwab, H.; Abramić, M.; Vujaklija, D. The SGNH-Hydrolase of Streptomyces coelicolor Has (Aryl)Esterase and a True Lipase Activity. Biochimie 2009, 91, 390–400. DOI: 10.1016/j.biochi.2008.10.018.
  • Lazzari, F.; Alexander, B. D.; Dalgliesh, R. M.; Alongi, J.; Ranucci, E.; Ferruti, P.; Griffiths, P. C. pH-Dependent Chiral Recognition of D- and L-Arginine Derived Polyamidoamino Acids by Self-Assembled Sodium Deoxycholate. Polymers (Basel) 2020, 12, 900. DOI: 10.3390/polym12040900.
  • Cajal, Y.; Svendsen, A.; Girona, V.; Patkar, S. A.; Alsina, M. A. Interfacial Control of Lid Opening in Thermomyces lanuginosa Lipase. Biochemistry 2000, 39, 413–423. DOI: 10.1021/bi991927i.
  • Bohr, S. S. R.; Thorlaksen, C.; Kühnel, R. M.; Günther-Pomorski, T.; Hatzakis, N. S. Label-Free Fluorescence Quantification of Hydrolytic Enzyme Activity on Native Substrates Reveals How Lipase Function Depends on Membrane Curvature. Langmuir 2020, 36, 6473–6481. DOI: 10.1021/acs.langmuir.0c00787.
  • Koynova, R.; Caffrey, M. Phases and Phase Transitions of the Phosphatidylcholines. Biochim. Biophys. Acta. 1998, 1376, 91–145. DOI: 10.1016/S0013-4686(03)00208-1.
  • DeSanti, C. L.; Strohl, W. R. Characterization of the Streptomyces Sp. Strain C5 Snp Locus and Development of Snp-Derived Expression Vectors. Appl. Environ. Microbiol. 2003, 69, 1647–1654. DOI: 10.1128/AEM.69.3.1647-1654.2003.
  • Filić, Ž.; Bielen, A.; Ćehić, M.; Šarić, E.; Crnolatac, I.; Tomić, S.; Abramić, M.; Vujaklija, D. Extracellular lipase from Streptomyces Rimosus: Structure-activity study by experimental and computational approach. Manuscript in Preparation, 2022.
  • Xia, Y.; Xu, C.; Zhang, X.; Ning, P.; Wang, Z.; Tian, J.; Chen, X. Liposome-Based Probes for Molecular Imaging: From Basic Research to the Bedside. Nanoscale 2019, 11, 5822–5838. DOI: 10.1039/C9NR00207C.
  • Menges, F. Spectragryph – optical spectroscopy software, Version 1.2.15. 2015. http://www.effemm2.de/spectragryph/. 25.10.2022.
  • Maleš, P.; Brkljača, Z.; Crnolatac, I.; Bakarić, D. Application of MCR-ALS with EFA on FT-IR Spectra of Lipid Bilayers in the Assessment of Phase Transition Temperatures: Potential for Discernment of Coupled Events. Colloids Surf. B Biointerfaces 2021, 201, 111645. DOI: 10.1016/j.colsurfb.2021.111645.
  • Kondo, T.; Kichijo, M.; Maruta, A.; Nakaya, M.; Takenaka, S.; Arakawa, T.; Fushinobu, S.; Sakamoto, T. Structural and Functional Analysis of Gum Arabic L-Rhamnose-α-1,4-D-Glucuronate Lyase Establishes a Novel Polysaccharide Lyase Family. J. Biol. Chem. 2021, 297, 101001. DOI: 10.1016/j.jbc.2021.101001.
  • Martínez, L.; Andrade, R.; Birgin, E. G.; Martínez, J. M. Software News and Updates. Packmol: A Package for Building Initial Configurations for Molecular Dynamics Simulations. J. Comput. Chem. 2009, 30, 2157–2164. DOI: 10.1002/jcc.
  • Jämbeck, J. P. M.; Lyubartsev, A. P. Derivation and Systematic Validation of a Refined All-Atom Force Field for Phosphatidylcholine Lipids. J. Phys. Chem. B 2012, 116, 3164–3179. DOI: 10.1021/jp212503e.
  • Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25, 1157–1174. DOI: 10.1002/jcc.20035.
  • Kirschner, K. N.; Yongye, A. B.; Tschampel, S. M.; González-Outeiriño, J.; Daniels, C. R.; Foley, B. L.; Woods, R. J. GLYCAM06: A Generalizable Biomolecular Force Field. Carbohydrates. J. Comput. Chem. 2008, 29, 622–655. DOI: 10.1002/jcc.20820.
  • Joung, I. S.; Cheatham, T. E. III. Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations. J Phys Chem B 2008, 112, 9020–9041. DOI: 10.1021/jp8001614.
  • Cieplak, P.; Cornell, W. D.; Bayly, C.; Kollman, P. A. Application of the Multimolecule and to Biopolymers: Charge Derivation for Multiconformational RESP Methodology DNA, RNA, and Proteins. J. Comput. Chem. 1995, 16, 1357–1377. DOI: 10.1016/S0422-9894(08)70043-6.
  • Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An Nlog(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98, 10089–10092. DOI: 10.1063/1.464397.
  • Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindah, E. Gromacs: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25. DOI: 10.1016/j.softx.2015.06.001.
  • Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. DOI: 10.1016/j.carbon.2017.07.012.
  • Pliego, J.; Mateos, J. C.; Rodriguez, J.; Valero, F.; Baeza, M.; Femat, R.; Camacho, R.; Sandoval, G.; Herrera-López, E. J. Monitoring Lipase/Esterase Activity by Stopped Flow in a Sequential Injection Analysis System Using p-Nitrophenyl Butyrate. Sensors (Basel) 2015, 15, 2798–2811. DOI: 10.3390/s150202798.
  • Malathi, S.; Ezhilarasu, T.; Abiraman, T.; Balasubramanian, S. One Pot Green Synthesis of Ag, Au and Au-Ag Alloy Nanoparticles Using Isonicotinic Acid Hydrazide and Starch. Carbohydr. Polym. 2014, 111, 734–743. DOI: 10.1016/j.carbpol.2014.04.105.
  • Peng, Y.; Fu, S.; Liu, H.; Lucia, L. A. Accurately Determining Esterase Activity via the Isosbestic Point of p-Nitrophenol. BioResources 2016, 11, 10099–10111. DOI: 10.15376/biores.11.4.10099-10111.
  • Iizuka, K.; Higurashi, H.; Fujimoto, J.; Hayashi, Y.; Yamamoto, K.; Hiura, H. Purification of Human Pancreatic Lipase and the Influence of Bicarbonate on Lipase Activity. Ann. Clin. Biochem. 1991, 28, 373–378. DOI: 10.1177/000456329102800411.
  • Schullery, S. E.; Seder, T. A.; Weinstein, D. A.; Bryant, D. A. Differential Thermal Analysis of Dipalmitoylphosphatidylcholine-Fatty Acid Mixturest. Biochemistry 1981, 20, 6818–6824. DOI: 10.1021/bi00527a012.
  • Mabrey, S.; Sturtevant, J. M. Incorporation of Saturated Fatty Acids into Phosphatidylcholine Bilayers. Biochim. Biophys. Acta (BBA)/Lipids Lipid. Metab. 1977, 486, 444–450. DOI: 10.1016/0005-2760(77)90094-7.
  • Sathivel, S.; Prinyawiwatkul, W.; Negulescu, I. I.; King, J. M. Determination of Melting Points, Specific Heat Capacity and Enthalpy of Catfish Visceral Oil during the Purification Process. J. Am. Oil Chem. Soc. 2008, 85, 291–296. DOI: 10.1007/s11746-007-1191-9.
  • Weng, J.; Zhang, X. Enzymatic Hydrolysis of P-Nitrophenyl Butyrate in Water-in-Ionic Liquid Microemulsion. Ferroelectrics 2018, 528, 122–130. DOI: 10.1080/00150193.2018.1449439.
  • Zuidam, N. J.; Crommelin, D. J. A. Differential Scanning Calorimetric Analysis of Dipalmitoylphosphatidylcholine-Liposomes upon Hydrolysis. Int. J. Pharm. 1995, 126, 209–217. DOI: 10.1016/0378-5173(95)04129-X.
  • Fameau, A. L.; Ventureira, J.; Novales, B.; Douliez, J. P. Foaming and Emulsifying Properties of Fatty Acids Neutralized by Tetrabutylammonium Hydroxide. Colloids Surfaces A Physicochem. Eng. Asp. 2012, 403, 87–95. DOI: 10.1016/j.colsurfa.2012.03.059.
  • Willems, N.; Lelimousin, M.; Koldsø, H.; Sansom, M. S. P. Interfacial Activation of M37 Lipase: A Multi-Scale Simulation Study. Biochim. Biophys. Acta Biomembr. 2017, 1859, 340–349. DOI: 10.1016/j.bbamem.2016.12.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.