71
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Removal of Pb(II) and Cd(II) heavy metals from aqueous solution by FeNi3@MnO2 core–shell nanostructure

&
Pages 402-413 | Received 07 Aug 2022, Accepted 21 Nov 2022, Published online: 12 Dec 2022

References

  • Roy, S.; Prasad, A.; Tevatia, R.; Saraf, R. F. Heavy Metal Ion Detection on a Microspot Electrode Using an Optical Electrochemical Probe. Electrochem. Commun. 2018, 86, 94–98. DOI: 10.1016/j.elecom.2017.11.021.
  • Uddin, M. K. A Review on the Adsorption of Heavy Metals by Clay Minerals, with Special Focus on the past Decade. Chem. Eng. J. 2017, 308, 438–462. DOI: 10.1016/j.cej.2016.09.029.
  • Elgarahy, A.; Elwakeel, K.; Mohammad, S.; Elshoubaky, G. A Critical Review of Biosorption of Dyes, Heavy Metals and Metalloids from Wastewater as an Efficient and Green Process. Clean. Eng. Technol. 2021, 4, 100209. DOI: 10.1016/j.clet.2021.100209.
  • Gunatilake, S. Methods of Removing Heavy Metals from Industrial Wastewater. Methods 2015, 1, 14.
  • Zare, E. N.; Motahari, A.; Sillanpää, M. Nanoadsorbents Based on Conducting Polymer Nanocomposites with Main Focus on Polyaniline and Its Derivatives for Removal of Heavy Metal Ions/Dyes: A Review. Environ. Res. 2018, 162, 173–195. DOI: 10.1016/j.envres.2017.12.025.
  • Rao, R. A. K.; Ikram, S.; Uddin, M. K. Removal of Cd (II) from Aqueous Solution by Exploring the Biosorption Characteristics of Gaozaban (Onosma bracteatum). J. Environ. Chem. Eng. 2014, 2, 1155–1164. DOI: 10.1016/j.jece.2014.04.008.
  • Li, F.; Wang, B.; Pang, Z.; Wang, Z.; Dong, C. Application of Cellulose-Based Solid Acid in Absorption of Heavy Metal Ions from Printing Waste Water. In Applied Sciences in Graphic Communication and Packaging; Springer: Singapore, 2018; pp. 893–900. DOI: 10.1007/978-981-10-7629-9_111
  • Liu, H.; Wang, Q.; Zhang, F. Preparation of Fe3O4@ SiO2@ P (AANa-Co-AM) Composites and Their Adsorption for Pb (II). ACS Omega 2020, 5, 8816–8824. DOI: 10.1021/acsomega.0c00403.
  • He, K.; Chen, Y.; Tang, Z.; Hu, Y. Removal of Heavy Metal Ions from Aqueous Solution by Zeolite Synthesized from Fly Ash. Environ. Sci. Pollut. Res. Int. 2016, 23, 2778–2788. DOI: 10.1007/s11356-015-5422-6.
  • Nilchi, A.; Babalou, A.; Rafiee, R.; Kalal, H. S. Adsorption Properties of Amidoxime Resins for Separation of Metal Ions from Aqueous Systems. React. Funct. Polym. 2008, 68, 1665–1670. DOI: 10.1016/j.reactfunctpolym.2008.09.011.
  • Alguacil, F. J.; Alcaraz, L.; García-Díaz, I.; López, F. A. Removal of Pb2+ in Wastewater via Adsorption onto an Activated Carbon Produced from Winemaking Waste. Metals 2018, 8, 697. DOI: 10.3390/met8090697.
  • Huang, Y.; Wu, H.; Shao, T.; Zhao, X.; Peng, H.; Gong, Y.; Wan, H. Enhanced Copper Adsorption by DTPA-Chitosan/Alginate Composite Beads: Mechanism and Application in Simulated Electroplating Wastewater. Chem. Eng. J. 2018, 339, 322–333. DOI: 10.1016/j.cej.2018.01.071.
  • Elwakeel, K. Z. Removal of Cr (VI) from Alkaline Aqueous Solutions Using Chemically Modified Magnetic Chitosan Resins. Desalination 2010, 250, 105–112. DOI: 10.1016/j.desal.2009.02.063.
  • Elwakeel, K. Z.; Atia, A. A. Uptake of U (VI) from Aqueous Media by Magnetic Schiff’s Base Chitosan Composite. J. Clean. Prod. 2014, 70, 292–302. DOI: 10.1016/j.jclepro.2014.02.017.
  • Abdi, G.; Alizadeh, A.; Zinadini, S.; Moradi, G. Removal of Dye and Heavy Metal Ion Using a Novel Synthetic Polyethersulfone Nanofiltration Membrane Modified by Magnetic Graphene Oxide/Metformin Hybrid. J. Membr. Sci. 2018, 552, 326–335. DOI: 10.1016/j.memsci.2018.02.018.
  • Ozdes, D.; Duran, C.; Senturk, H. B. Adsorptive Removal of Cd (II) and Pb (II) Ions from Aqueous Solutions by Using Turkish Illitic Clay. J. Environ. Manage 2011, 92, 3082–3090. DOI: 10.1016/j.jenvman.2011.07.022.
  • Sun, S.; Zeng, H. Size-Controlled Synthesis of Magnetite Nanoparticles. J Am Chem Soc 2002, 124, 8204–8205. DOI: 10.1021/ja026501x.
  • Park, S.-J.; Kim, S.; Lee, S.; Khim, Z. G.; Char, K.; Hyeon, T. Synthesis and Magnetic Studies of Uniform Iron Nanorods and Nanospheres. J. Am. Chem. Soc. 2000, 122, 8581–8582. DOI: 10.1021/ja001628c.
  • Chen, Q.; Rondinone, A. J.; Chakoumakos, B. C.; Zhang, Z. J. Synthesis of Superparamagnetic MgFe2O4 Nanoparticles by Coprecipitation. J. Magn. Magn. Mater. 1999, 194, 1–7. DOI: 10.1016/S0304-8853(98)00585-X.
  • Jafari, A.; Shayesteh, S. F.; Salouti, M.; Boustani, K. Effect of Annealing Temperature on Magnetic Phase Transition in Fe3O4 Nanoparticles. J. Magn. Magn. Mater. 2015, 379, 305–312. DOI: 10.1016/j.jmmm.2014.12.050.
  • Stoia, M.; Istratie, R.; Păcurariu, C. Investigation of Magnetite Nanoparticles Stability in Air by Thermal Analysis and FTIR Spectroscopy. J. Therm. Anal. Calorim. 2016, 125, 1185–1198. DOI: 10.1007/s10973-016-5393-y.
  • Forsmo, S. Oxidation of Magnetite Concentrate Powders during Storage and Drying. Int. J. Miner. Process 2005, 75, 135–144. DOI: 10.1016/j.minpro.2004.08.010.
  • Lu, X.; Liang, G.; Zhang, Y. Synthesis and Characterization of Magnetic FeNi3 Particles Obtained by Hydrazine Reduction in Aqueous Solution. Mater. Sci. Eng. B 2007, 139, 124–127. DOI: 10.1016/j.mseb.2007.01.055.
  • Shi, S.; Xu, C.; Dong, Q.; Wang, Y.; Zhu, S.; Zhang, X.; Chow, Y. T.; Wang, X.; Zhu, L.; Zhang, G.; et al. High Saturation Magnetization MnO2/PDA/Fe3O4 Fibers for Efficient Pb (II) Adsorption and Rapid Magnetic Separation. Appl. Surf. Sci. 2021, 541, 148379. DOI: 10.1016/j.apsusc.2020.148379.
  • Phouthavong, V.; Yan, R.; Nijpanich, S.; Hagio, T.; Ichino, R.; Kong, L.; Li, L. Magnetic Adsorbents for Wastewater Treatment: Advancements in Their Synthesis Methods. Materials 2022, 15, 1053. DOI: 10.3390/ma15031053.
  • Shan, C.; Tong, M. Efficient Removal of Trace Arsenite through Oxidation and Adsorption by Magnetic Nanoparticles Modified with Fe–Mn Binary Oxide. Water Res. 2013, 47, 3411–3421. DOI: 10.1016/j.watres.2013.03.035.
  • Kim, E.-J.; Lee, C.-S.; Chang, Y.-Y.; Chang, Y.-S. Hierarchically Structured Manganese Oxide-Coated Magnetic Nanocomposites for the Efficient Removal of Heavy Metal Ions from Aqueous Systems. ACS Appl. Mater. Interfaces 2013, 5, 9628–9634. DOI: 10.1021/am402615m.
  • Chen, J.; He, F.; Zhang, H.; Zhang, X.; Zhang, G.; Yuan, G. Novel Core–Shell Structured Mn–Fe/MnO2 Magnetic Nanoparticles for Enhanced Pb (II) Removal from Aqueous Solution. Ind. Eng. Chem. Res. 2014, 53, 18481–18488. DOI: 10.1021/ie502967a.
  • Zhang, Y.; Yan, L.; Xu, W.; Guo, X.; Cui, L.; Gao, L.; Wei, Q.; Du, B. Adsorption of Pb (II) and Hg (II) from Aqueous Solution Using Magnetic CoFe2O4-Reduced Graphene Oxide. J. Mol. Liq. 2014, 191, 177–182. DOI: 10.1016/j.molliq.2013.12.015.
  • Chen, K.; He, J.; Li, Y.; Cai, X.; Zhang, K.; Liu, T.; Hu, Y.; Lin, D.; Kong, L.; Liu, J. Removal of Cadmium and Lead Ions from Water by Sulfonated Magnetic Nanoparticle Adsorbents. J. Colloid Interface Sci. 2017, 494, 307–316. DOI: 10.1016/j.jcis.2017.01.082.
  • Ji, J.; Chen, G.; Zhao, J. Preparation and Characterization of Amino/Thiol Bifunctionalized Magnetic Nanoadsorbent and Its Application in Rapid Removal of Pb (II) from Aqueous System. J. Hazard Mater. 2019, 368, 255–263. DOI: 10.1016/j.jhazmat.2019.01.035.
  • Lu, X.; Liang, G.; Sun, Q.; Yang, C. High-Frequency Magnetic Properties of FeNi3–SiO2 Nanocomposite Synthesized by a Facile Chemical Method. J. Alloys Compd. 2011, 509, 5079–5083. DOI: 10.1016/j.jallcom.2011.01.101.
  • Zhang, K.; Li, H.; Xu, X.; Yu, H. Synthesis of Reduced Graphene Oxide/NiO Nanocomposites for the Removal of Cr (VI) from Aqueous Water by Adsorption. Microporous Mesoporous Mater. 2018, 255, 7–14. DOI: 10.1016/j.micromeso.2017.07.037.
  • Han, W.; Yang, X.; Zhao, F.; Shi, X.; Wang, T.; Zhang, X.; Jiang, L.; Wang, C. A Mesoporous Titanium Glycolate with Exceptional Adsorption Capacity to Remove Multiple Heavy Metal Ions in Water. RSC Adv. 2017, 7, 30199–30204. DOI: 10.1039/C7RA03439C.
  • Ge, L.; Wang, W.; Peng, Z.; Tan, F.; Wang, X.; Chen, J.; Qiao, X. Facile Fabrication of Fe@ MgO Magnetic Nanocomposites for Efficient Removal of Heavy Metal Ion and Dye from Water. Powder Technol 2018, 326, 393–401. DOI: 10.1016/j.powtec.2017.12.003.
  • Nasseh, N.; Taghavi, L.; Barikbin, B.; Nasseri, M. A.; Allahresani, A. FeNi3/SiO2 Magnetic Nanocomposite as an Efficient and Recyclable Heterogeneous Fenton-like Catalyst for the Oxidation of Metronidazole in Neutral Environments: Adsorption and Degradation Studies. Compos. Part B Eng. 2019, 166, 328–340. DOI: 10.1016/j.compositesb.2018.11.112.
  • Khodadadi, M.; Panahi, A. H.; Al-Musawi, T. J.; Ehrampoush, M.; Mahvi, A. The Catalytic Activity of FeNi3@ SiO2 Magnetic Nanoparticles for the Degradation of Tetracycline in the Heterogeneous Fenton-like Treatment Method. J. Water Process Eng. 2019, 32, 100943. DOI: 10.1016/j.jwpe.2019.100943.
  • Chen, H.; He, J. Facile Synthesis of Monodisperse Manganese Oxide Nanostructures and Their Application in Water Treatment. J. Phys. Chem. C 2008, 112, 17540–17545. DOI: 10.1021/jp806160g.
  • Oskui, F. N.; Aghdasinia, H.; Sorkhabi, M. G. Adsorption of Cr (III) Using an Iranian Natural Nanoclay: Applicable to Tannery Wastewater: Equilibrium, Kinetic, and Thermodynamic. Environ. Earth Sci. 2019, 78, 1–14.
  • Dehghani, M. H.; Sarmadi, M.; Alipour, M. R.; Sanaei, D.; Abdolmaleki, H.; Agarwal, S.; Gupta, V. K. Investigating the Equilibrium and Adsorption Kinetics for the Removal of Ni (II) Ions from Aqueous Solutions Using Adsorbents Prepared from the Modified Waste Newspapers: A Low-Cost and Available Adsorbent. Microchem. J. 2019, 146, 1043–1053. DOI: 10.1016/j.microc.2019.02.042.
  • Takdastan, A.; Samarbaf, S.; Tahmasebi, Y.; Alavi, N.; Babaei, A. A. Alkali Modified Oak Waste Residues as a Cost-Effective Adsorbent for Enhanced Removal of Cadmium from Water: Isotherm, Kinetic, Thermodynamic and Artificial Neural Network Modeling. J. Ind. Eng. Chem. 2019, 78, 352–363. DOI: 10.1016/j.jiec.2019.05.034.
  • Wang, W.; Jiao, T.; Zhang, Q.; Luo, X.; Hu, J.; Chen, Y.; Peng, Q.; Yan, X.; Li, B. Hydrothermal Synthesis of Hierarchical Core–Shell Manganese Oxide Nanocomposites as Efficient Dye Adsorbents for Wastewater Treatment. RSC Adv. 2015, 5, 56279–56285. DOI: 10.1039/C5RA08678G.
  • Guo, X.; Du, B.; Wei, Q.; Yang, J.; Hu, L.; Yan, L.; Xu, W. Synthesis of Amino Functionalized Magnetic Graphenes Composite Material and Its Application to Remove Cr (VI), Pb (II), Hg (II), Cd (II) and Ni (II) from Contaminated Water. J. Hazard Mater. 2014, 278, 211–220. DOI: 10.1016/j.jhazmat.2014.05.075.
  • Jung, K.-W.; Lee, S. Y.; Choi, J.-W.; Hwang, M.-J.; Shim, W. G. Synthesis of Mg–Al Layered Double Hydroxides-Functionalized Hydrochar Composite via an in Situ One-Pot Hydrothermal Method for Arsenate and Phosphate Removal: Structural Characterization and Adsorption Performance. Chem. Eng. J. 2021, 420, 129775. DOI: 10.1016/j.cej.2021.129775.
  • Li, M.; Wei, D.; Liu, T.; Liu, Y.; Yan, L.; Wei, Q.; Du, B.; Xu, W. EDTA Functionalized Magnetic Biochar for Pb (II) Removal: Adsorption Performance, Mechanism and SVM Model Prediction. Sep. Purif. Technol. 2019, 227, 115696. DOI: 10.1016/j.seppur.2019.115696.
  • Maneechakr, P.; Karnjanakom, S. Facile Utilization of Magnetic MnO2@ Fe3O4@ Sulfonated Carbon Sphere for Selective Removal of Hazardous Pb (II) Ion with an Excellent Capacity: Adsorption Behavior/Isotherm/Kinetic/Thermodynamic Studies. J. Environ. Chem. Eng. 2021, 9, 106191. DOI: 10.1016/j.jece.2021.106191.
  • Xiong, T.; Yuan, X.; Cao, X.; Wang, H.; Jiang, L.; Wu, Z.; Liu, Y. Mechanistic Insights into Heavy Metals Affinity in Magnetic MnO2@ Fe3O4/Poly (m-Phenylenediamine) Core- Shell Adsorbent. Ecotoxicol. Environ. Saf. 2020, 192, 110326. DOI: 10.1016/j.ecoenv.2020.110326.
  • Jiang, L.; Ye, Q.; Chen, J.; Chen, Z.; Gu, Y. Preparation of Magnetically Recoverable Bentonite–Fe3O4–MnO2 Composite Particles for Cd (II) Removal from Aqueous Solutions. J Colloid Interface Sci. 2018, 513, 748–759. DOI: 10.1016/j.jcis.2017.11.063.
  • Zhou, G.; Wang, Y.; Zhou, R.; Wang, C.; Jin, Y.; Qiu, J.; Hua, C.; Cao, Y. Synthesis of Amino-Functionalized Bentonite/CoFe2O4@ MnO2 Magnetic Recoverable Nanoparticles for Aqueous Cd2+ Removal. Sci. Total Environ. 2019, 682, 505–513. DOI: 10.1016/j.scitotenv.2019.05.218.
  • Tan, X.; Liu, S.; Liu, Y.; Gu, Y.; Zeng, G.; Hu, X.; Wang, X.; Liu, S.; Jiang, L. Biochar as Potential Sustainable Precursors for Activated Carbon Production: Multiple Applications in Environmental Protection and Energy Storage. Bioresour. Technol. 2017, 227, 359–372. DOI: 10.1016/j.biortech.2016.12.083.
  • Rada, S.; Dehelean, A.; Culea, E. FTIR, Raman, and UV-Vis Spectroscopic and DFT Investigations of the Structure of Iron–Lead–Tellurate Glasses. J. Mol. Model 2011, 17, 2103–2111. DOI: 10.1007/s00894-010-0911-5.
  • Arulmozhi, K.; Mythili, N. Studies on the Chemical Synthesis and Characterization of Lead Oxide Nanoparticles with Different Organic Capping Agents. AIP Adv. 2013, 3, 122122. DOI: 10.1063/1.4858419.
  • Kumari, R.; Kumar, V. Impact of Zinc Doping on Structural, Optical, and Electrical Properties of CdO Films Prepared by Sol–Gel Screen Printing Mechanism. J. Sol-Gel Sci. Technol. 2020, 94, 648–657. DOI: 10.1007/s10971-019-05202-0.
  • Kaviyarasu, K.; Manikandan, E.; Paulraj, P.; Mohamed, S.; Kennedy, J. One Dimensional Well-Aligned CdO Nanocrystal by Solvothermal Method. J. Alloys Compd 2014, 593, 67–70. DOI: 10.1016/j.jallcom.2014.01.071.
  • Li, X.; Zhao, K.; You, C.; Linghu, W.; Ye, F.; Yu, M.; Alsaedi, A.; Hayat, T.; Pan, H.; Luo, J.; et al. Nanocomposites of Polyaniline Functionalized Graphene Oxide: Synthesis and Application as a Novel Platform for Removal of Cd (II), Eu (III), Th (IV) and U (VI) in Water. J. Radioanal. Nucl. Chem. 2018, 315, 509–522. DOI: 10.1007/s10967-017-5696-x.
  • Bharath, G.; Alhseinat, E.; Ponpandian, N.; Khan, M. A.; Siddiqui, M. R.; Ahmed, F.; Alsharaeh, E. H. Development of Adsorption and Electrosorption Techniques for Removal of Organic and Inorganic Pollutants from Wastewater Using Novel Magnetite/Porous Graphene-Based Nanocomposites. Sep. Purif. Technol. 2017, 188, 206–218. DOI: 10.1016/j.seppur.2017.07.024.
  • Hu, M.; Yan, X.; Hu, X.; Feng, R.; Zhou, M. High-Capacity Adsorption of Benzotriazole from Aqueous Solution by Calcined Zn-Al Layered Double Hydroxides. Colloids Surf. Physicochem. Eng. Asp 2018, 540, 207–214. DOI: 10.1016/j.colsurfa.2018.01.009.
  • Seema, K.; Mamba, B.; Njuguna, J.; Bakhtizin, R.; Mishra, A. Removal of Lead (II) from Aqeouos Waste Using (CD-PCL-TiO2) Bio-Nanocomposites. Int. J. Biol. Macromol. 2018, 109, 136–142. DOI: 10.1016/j.ijbiomac.2017.12.046.
  • Tran, H. N.; Lima, E. C.; Juang, R.-S.; Bollinger, J.-C.; Chao, H.-P. Thermodynamic Parameters of Liquid–Phase Adsorption Process Calculated from Different Equilibrium Constants Related to Adsorption Isotherms: A Comparison Study. J. Environ. Chem. Eng. 2021, 9, 106674. DOI: 10.1016/j.jece.2021.106674.
  • Tran, H. N. Improper Estimation of Thermodynamic Parameters in Adsorption Studies with Distribution Coefficient KD (Qe/Ce) or Freundlich Constant (KF): Considerations from the Derivation of Dimensionless Thermodynamic Equilibrium Constant and Suggestions. Adsorpt. Sci. Technol. 2022, 3, 2022.
  • Dinh, V.-P.; Le, N.-C.; Tuyen, L. A.; Hung, N. Q.; Nguyen, V.-D.; Nguyen, N.-T. Insight into Adsorption Mechanism of Lead (II) from Aqueous Solution by Chitosan Loaded MnO2 Nanoparticles. Mater. Chem. Phys. 2018, 207, 294–302. DOI: 10.1016/j.matchemphys.2017.12.071.
  • Sag, Y.; Kutsal, T. Determination of the Biosorption Heats of Heavy Metal Ions on Zoogloea ramigera and Rhizopus arrhizus. Biochem. Eng. J. 2000, 6, 145–151. DOI: 10.1016/s1369-703x(00)00083-8.
  • Lian, L.; Guo, L.; Guo, C. Adsorption of Congo Red from Aqueous Solutions onto Ca-Bentonite. J. Hazard Mater. 2009, 161, 126–131. DOI: 10.1016/j.jhazmat.2008.03.063.
  • Kumar, R.; Ansari, M. O.; Barakat, M. DBSA Doped Polyaniline/Multi-Walled Carbon Nanotubes Composite for High Efficiency Removal of Cr (VI) from Aqueous Solution. Chem. Eng. J. 2013, 228, 748–755. DOI: 10.1016/j.cej.2013.05.024.
  • Gupta, V. K. Equilibrium Uptake, Sorption Dynamics, Process Development, and Column Operations for the Removal of Copper and Nickel from Aqueous Solution and Wastewater Using Activated Slag, a Low-Cost Adsorbent. Ind. Eng. Chem. Res. 1998, 37, 192–202. DOI: 10.1021/ie9703898.
  • Yang, H.; Lu, M.; Chen, D.; Chen, R.; Li, L.; Han, W. Efficient and Rapid Removal of Pb2+ from Water by Magnetic Fe3O4@ MnO2 Core-Shell Nanoflower Attached to Carbon Microtube: Adsorption Behavior and Process Study. J. Colloid Interface Sci. 2020, 563, 218–228. DOI: 10.1016/j.jcis.2019.12.065.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.