208
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

The study on interactions between stabilizers and asphaltenes

, , , , &
Pages 461-474 | Received 18 May 2022, Accepted 11 Dec 2022, Published online: 28 Dec 2022

References

  • Akbarzadeh, K.; Alboudware, H.; Svrcek, W. Y.; Yarranton, H. W. A Generalized Regular Solution Model for Asphaltene Precipitation from n-Alkane Diluted Heavy Oils and Bitumens. Fluid Phase Equilib. 2005, 232, 159–170. DOI: 10.1016/j.fluid.2005.03.029.
  • Goual, L.; Sedghi, M.; Wang, X.; Zhu, Z. Asphaltene Aggregation and Impact of Alkylphenols. Langmuir 2014, 30, 5394–5403. DOI: 10.1021/la500615k.
  • Sjöblom, J.; Simon, S.; Xu, Z. Model Molecules Mimicking Asphaltenes. Adv. Colloid Interface Sci. 2015, 218, 1–16. DOI: 10.1016/j.cis.2015.01.002.
  • Goual, L.; Firoozabadi, A. Measuring Asphaltenes and Resins, and Dipole Moment in Petroleum Fluids. AIChE J. 2002, 48, 2646–2663. DOI: 10.1002/aic.690481124.
  • Al-Humaidan, F. S.; Hauser, A.; Rana, M. S.; Lababidi, H. M. S. NMR Characterization of Asphaltene Derived from Residual Oils and Their Thermal Decomposition. Energy Fuels 2017, 31, 3812–3820. DOI: 10.1021/acs.energyfuels.6b03433.
  • Betancourt, C. F.; Avella, M. E.; Trujillo, C. A. Structural Characterization of Unfractionated Asphalts by 1H NMR and 13C NMR. Energy Fuels 2016, 30, 2729–2740. DOI: 10.1021/acs.energyfuels.5b02941.
  • Mullins, O. C.; Sheu, E. Y.; Hammami, A.; Marshall.; A. G. Asphaltenes Heavy Oils, and Petroleomics; Springer: New York, 2007, Vol. 1. ISBN 13: 978-0387-31734-2.
  • Xiaodong, D.; Shuanglin, Y.; Yuan, Y.; Huanrong, L. N, O, and S Functional Groups in Residue Asphaltene before and after Hydrotreating via X-Ray Technology. Pet. Sci. Technol. 2017, 35, 988–992. DOI: 10.1080/10916466.2017.1352603.
  • Greenfield, M. L.; Byrne, M.; Mitra-Kirtley, S.; Kercher, E. M.; Bolin, T. B.; Wu, T.; Craddock, P. R.; Bake, K. D.; Pomerantz, A. E. XANES Measurements of Sulfur Chemistry during Asphalt Oxidation. Fuel 2015, 162, 179–185. 0016-2361. DOI: 10.1016/j.fuel.2015.08.074.
  • Shao, R.; Shen, Z.; Li, D.; Sun, Z.; Pei, L.; Liu, X.; Li, W.; Dan, Y. Investigation on Composition and Structure of Asphaltenes during Low-Temperature Coal Tar Hydrotreatment under Various Reaction Pressures. J. Anal. Appl. Pyrolysis 2018, 136, 44–52. DOI: 10.1016/j.jaap.2018.11.002.
  • Mousavi, M.; Abdollahi, T.; Pahlavan, F.; Fini, E. H. The Influence of Asphaltene-Resin Molecular Interactions on the Colloidal Stability of Crude Oil. Fuel 2016, 183, 262–271. DOI: 10.1016/j.fuel.2016.06.100.
  • Flahaut, D.; Minvielle, M.; Sambou, A.; Lecour, P.; Legens, C.; Barbier, J. Identification of Sulphur, Oxygen and Nitrogen Species in Heavy Oils by X-Ray Photoelectron Spectroscopy. Fuel 2017, 202, 307–317. 0016-2361. DOI: 10.1016/j.fuel.2017.04.046.
  • Sun, X.; Song, L.; Han, Z.; Wang, Y.; Tao, Y. Structure and Composition Characterization of Asphaltenes by Solid State 13C-NMR. Acta Pet. Sin. (Pet. Process. Sect.). 2018, 34, 1149–1154. DOI: CNKI:SUN:SXJG.0.2018-06-015.
  • Martha, L.; Chacón-Patiño, S.; Christopher, D. F.; Hendrickson, L.; Marshall, A. G.; Rodgers, R. P. Advances in Asphaltene Petroleomics. Part 4. Compositional Trends of Solubility Subfractions Reveal That Polyfunctional Oxygen-Containing Compounds Drive Asphaltene Chemistry. Energy Fuels 2020, 34, 3013–3030. DOI: 10.1021/acs.energyfuels.9b04288.
  • Juyal, P.; Merino-Garcia, D.; Andersen, S. I. Effect on Molecular Interactions of Chemical Alteration of Petroleum Asphaltenes. Energy Fuels 2005, 19, 1272–1281. DOI: 10.1021/ef050012b.
  • Bake, K. D.; Craddock, P. R.; Bolin, T. B.; Abdallah, W.; Sudipa, M.; Andrews, A. B.; Mullins, O. C.; Pomerantz, A. E. Structure-Solubility Relationships in Coal, Petroleum, and Immature Source-Rock-Derived Asphaltenes. Energy Fuels 2020, 34, 10825–10836. DOI: 10.1021/acs.energyfuels.0c01960.
  • Zhang, Y.; Siskin, M.; Gray, M. R.; Walters, C. C.; Rodgers, R. P. Mechanisms of Asphaltene Aggregation: Puzzles and a New Hypothesis. Energy Fuels 2020, 34, 9094–9107. DOI: 10.1021/acs.energyfuels.0c01564.
  • Murgich, J. Intermolecular Forces in Aggregates of Asphaltene and Resins. Pet. Sci. Technol. 2002, 20, 983–997. DOI: 10.1081/LFT-120003692.
  • Bian, Y.; Dong, X.; Zhu, L.; Zhou, Y.; Xiang, Y.; Xia, D. Supramolecular Interaction of Petroleum Components and Model Compounds. Progr Chem. 2013, 25, 1260–1271. DOI: 10.7536/PC121239.
  • Painter, P.; Veytsman, B.; Youtcheff, J. Asphaltene Aggregation and Solubility. Energy Fuels 2015, 29, 2120–2133. DOI: 10.1021/ef5024912.
  • Evdokimov, N.; Fesan, A. A. Multi-Step Formation of Asphaltene Colloids in Dilute Solutions. Colloids Surfaces A: Physicochem. Eng. Aspects 2016, 492, 170–180. DOI: 10.1016/j.colsurfa.2015.11.072.
  • Francisco, M. V.; Mohammad, T. Asphaltene Deposition Fundamentals, Prediction, Prevention, and Remediation. CRC Press/Taylor & Francis Group: Florida, USA, 2018. ISBN: 978-1-138-03523-2.
  • Gawel, I.; Bociarska, D.; Biskupski, P. Effect of Asphaltenes on Hydroprocessing of Heavy Oils and Residua. Appl. Catal, A 2005, 295, 89–94. DOI: 10.1016/j.apcata.2005.08.001.
  • Nasim, H.; Pennapa, M.; Michael, P. H.; Fogler, H. S. A Unified Model for Aggregation of Asphaltenes. Energy Fuels 2013, 27, 2497–2505. DOI: 10.1021/ef4001665.
  • Chaisoontornyotin, W.; Haji-Akbari, N.; Fogler, H. S.; Hoepfner, M. P. Combined Asphaltene Aggregation and Deposition Investigation. Energy Fuels 2016, 30, 1979–1986. DOI: 10.1021/acs.energyfuels.5b02427.
  • Alimohammadi, S.; Zendehboudi, S.; James, L. A Comprehensive Review of Asphaltene Deposition in Petroleum Reservoirs: Theory, Challenges, and Tips. Fuel 2019, 252, 753–791. DOI: 10.1016/j.fuel.2019.03.016.
  • Sirota, E. B. Physical Structure of Asphaltenes. Energy Fuels 2005, 19, 1290–1296. DOI: 10.1021/ef049795b.
  • Panuganti, S. R.; Tavakkoli, M.; Vargas, F. M.; Gonzalez, D. L.; Chapman, W. G. SAFT Model for Upstream Asphaltene Applications. Fluid Phase Equilib. 2013, 359, 2–16. DOI: 10.1016/j.fluid.2013.05.010.
  • Mohammadi, A. H.; Eslamimanesh, A.; Richon, D. Monodisperse Thermodynamic Model Based on Chemical + Flory − Huggins Polymer Solution Theories for Predicting Asphaltene Precipitation. Ind. Eng. Chem. Res. 2012, 51, 4041–4055. DOI: 10.1021/ie202737p.
  • Michael, P. H.; Vipawee, L.; Varun, C.; Tabish, M.; Fogler, H. S. A Fundamental Study of Asphaltene Deposition. Energy Fuels 2013, 27, 725–735. DOI: 10.1021/ef3017392.
  • Shen, Y. Synthesis and Characterization of Oil-Soluble Dispersants. University of Waterloo, 2006. DOI: http://hdl.handle.net/10012/2730.
  • Subramanian, D.; Wu, K.; Firoozabadi, A. Ionic Liquids as Viscosity Modifiers for Heavy and Extra-Heavy Crude Oils. Fuel 2015, 143, 519–526. DOI: 10.1016/j.fuel.2014.11.051.
  • Firoozinia, H.; Abad, K. F. H.; Varamesh, A. A Comprehensive Experimental Evaluation of Asphaltene Dispersants for Injection under Reservoir Conditions. Pet. Sci. 2016, 13, 280–291. DOI: 10.1007/s12182-016-0078-5.
  • Lu, T.; Li, Z.; Fan, W.; Zhang, X.; Lv, Q. Nanoparticles for Inhibition of Asphaltenes Deposition during CO2 Flooding. Ind. Eng. Chem. Res. 2016, 55, 6723–6733. DOI: 10.1021/acs.iecr.5b04893.
  • Jiang, B.; Zhang, R.; Yang, N.; Zhang, L.; Sun, Y.; Jian, C.; Liu, L.; Xu, Z. Molecular Mechanisms of Suppressing Asphaltene Aggregation and Flocculation by Dodecylbenzenesulfonic Acid Probed by Molecular Dynamics Simulations. Energy Fuels 2019, 33, 5067–5080. DOI: 10.1021/acs.energyfuels.9b00821.
  • Zahedi, E.; Vafaie-Sefti, M.; Shadman, M. M.; Naderi, H.; Amiri, M.; Noorbakhsh, A. Experimental Investigation of Dodecylbenzene Sulfonic Acid and Toluene Dispersants on Asphaltene Precipitation of Dead and Live Oil. Pet. Sci. Technol. 2017, 35, 653–660. DOI: 10.1080/10916466.2016.1278389.
  • Sreedhar, S.; Sébastien, S.; Johan, S. Interaction between Asphaltenes and Fatty-Alkylamine Inhibitor in Bulk Solution. J. Dispersion Sci. Technol. 2018, 39, 163–173. DOI: 10.1080/01932691.2017.1304221.
  • Chavez-Miyauchi, T. E.; Zamudio-Rivera, L. S.; Barba-Lopez, V.; Buenrostro-Gonzalez, E.; Martinez-Magadan, J. M. N-Aryl Amino-Alcohols as Stabilizers of Asphaltenes. Fuel 2013, 110, 302–309. DOI: 10.1016/j.fuel.2012.10.044.
  • Lowry, E.; Sedghi, M.; Goual, L. Polymers for Asphaltene Dispersion: Interaction Mechanisms and Molecular Design Considerations. J. Mol. Liq. 2017, 230, 589–599. DOI: 10.1016/j.molliq.2017.01.02.
  • Li, T.; Xu, J.; Zou, R.; Jiang, H.; Wang, J.; Li, L.; Stuart, M. A. C.; Prud’Homme, R. K.; Guo, X. Effect of Spacer Length between Phenyl Pendant and Backbone in Comb Copolymers on Flow Ability of Waxy Oil with Asphaltenes. Ind. Eng. Chem. Res. 2017, 56, 12447–12455. DOI: 10.1021/acs.iecr.7b02904.
  • Xu, J.; Zou, R.; Gai, D.; Theil, P.; Pickenbach, L.; Li, T.; Li, L.; Cohen Stuart, M. A.; Guo, X. Effect of Aromatic and Aliphatic Pendants in Poly(Maleic Acid Amide-co-Vinyl Acetate) on Asphaltene Precipitation in Heavy Oil. Ind. Eng. Chem. Res. 2018, 57, 10701–10708. DOI: 10.1021/acs.iecr.8b02208.
  • Ogunlaja, A. S.; Hosten, E.; Tshentu, Z. R. Dispersion of Asphaltenes in Petroleum with Ionic Liquids: Evaluation of Molecular Interactions in the Binary Mixture. Ind. Eng. Chem. Res. 2014, 53, 18390–18401. DOI: 10.1021/ie502672q.
  • Boukherissa, M.; Mutelet, F.; Modarressi, A.; Dicko, A.; Dafri, D.; Rogalski, M. Ionic Liquids as Dispersants of Petroleum Asphaltenes. Energy Fuels 2009, 23, 2557–2564. DOI: 10.1021/ef800629k.
  • Zheng, C.; Brunner, M.; Li, H.; Zhang, D.; Atkin, R. Dissolution and Suspension of Asphaltenes with Ionic Liquids. Fuel 2019, 238, 129–138. DOI: 10.1016/j.fuel.2018.10.070.
  • Bagherpour, S.; Riazi, M.; Riazi, M.; Cortés, F. B.; Mousavi, S. H. Investigating the Performance of Carboxylate-Alumoxane Nanoparticles as a Novel Chemically Functionalized Inhibitor on Asphaltene Precipitation. ACS Omega 2020, 5, 16149–16164. DOI: 10.1021/acsomega.0c01732.
  • Mohammadi, M.; Akbari, M.; Fakhroueian, Z.; Bahramian, A.; Azin, R.; Arya, S. Inhibition of Asphaltene Precipitation by TiO2, SiO2, and ZrO2 Nanofluids. Energy Fuels 2011, 25, 3150–3156. DOI: 10.1021/ef2001635.
  • Kraiwattanawong, K.; Fogler, H. S.; Gharfeh, S. G.; Singh, P.; Thomason, W. H.; Chavadej, S. Effect of Asphaltene Dispersants on Aggregate Size Distribution and Growth. Energy Fuels 2009, 23, 1575–1582. DOI: 10.1021/ef800706c.
  • Barcenas, M.; Orea, P.; Buenrostro-González, E.; Zamudio-Rivera, L. S.; Duda, Y. Study of Medium Effect on Asphaltene Agglomeration Inhibitor Efficiency. Energy Fuels 2008, 22, 1917–1922. DOI: 10.1021/ef700773m.
  • Chang, C. L.; Fogler, H. S. Stabilization of Asphaltenes in Aliphatic Solvents Using Alkylbenzene-Derived Amphiphiles. 2. Study of the Asphaltene-Amphiphile Interactions and Structures Using Fourier Transform Infrared Spectroscopy and Small-Angle X-Ray Scattering Techniques. Langmuir 1994, 10, 1758–1766. DOI: 10.1021/la00018a023.
  • Wei, D.; Orlandi, E.; Simon, S.; Sjöblom, J.; Suurkuusk, M. Interactions between Asphaltenes and Alkylbenzene-Derived Inhibitors Investigated by Isothermal Titration Calorimetry. J. Therm. Anal. Calorim. 2015, 120, 1835–1846. DOI: 10.1007/s10973-015-4542-z.
  • Goual, L.; Sedghi, M. Role of Ion-Pair Interactions on Asphaltene Stabilization by Alkylbenzenesulfonic Acids. J. Colloid Interface Sci. 2015, 440, 23–31. DOI: 10.1016/j.jcis.2014.10.043.
  • Faisal, T.; Solntsev, K. M.; Kahs, T.; Saleh, N.; Commins, P.; Whelan, J.; Mohamed, S.; Naumov, P. Formation of Noncovalent Complexes between Complex Mixtures of Polycyclic Aromatic Hydrocarbons (Asphaltenes) and Substituted Aromatics Studied by Fluorescence Spectroscopy. Energy Fuels 2021, 35, 8742–8755. DOI: 10.1021/acs.energyfuels.1c00555.
  • Sadeghtabaghi, Z.; Rabbani, A. R.; Hemmati-Sarapardeh, A. A Review on Asphaltenes Characterization by X-Ray Diffraction: Fundamentals, Challenges, and Tips. J. Mol. Struct. 2021, 1238, 130425. DOI: 10.1016/j.molstruc.2021.130425.
  • Guzmán, H. J.; Isquierdo, F.; Carbognani, L.; Vitale, G.; Scott, C. E.; Pereira-Almao, P. X‑Ray Photoelectron Spectroscopy Analysis of Hydrotreated Athabasca Asphaltenes. Energy Fuels 2017, 31, 10706–10717. DOI: 10.1021/acs.energyfuels.7b01863.
  • Abdallah, W. A.; Taylor, S. D. Study of Asphaltenes Adsorption on Metallic Surface Using XPS and TOF-SIMS. J. Phys. Chem. C. 2008, 112, 18963–18972. DOI: 10.1021/jp804483t.
  • Wang, S.; Liu, Q.; Tan, X.; Xu, C.; Gray, M. R. Study of Asphaltene Adsorption on Kaolinite by X‑Ray Photoelectron Spectroscopy and Time-of-Flight Secondary Ion Mass Spectroscopy. Energy Fuels 2013, 27, 2465–2473. DOI: 10.1021/ef4001314.
  • Amiri, R.; Khamehchi, E.; Ghaffarzadeh, M. Experimental Investigation of a Novel Multifunctional Chemical Solution on Preventing Asphaltene Precipitation Using Two Crude Oil Samples with Different Molecular Properties. J. Mol. Liq. 2020, 309, 113–121. DOI: 10.1016/j.molliq.2020.113121.
  • Rogel, E.; León, O. Study of the Adsorption of Alkyl-Benzene-Derived Amphiphiles on an Asphaltene Surface Using Molecular Dynamics Simulations. Energy Fuels 2001, 15, 1077–1086. DOI: 10.1021/ef000152f.
  • Lun, Z.; Liu, Y.; Zhang, Q.; Liu, M.; Liu, J.; Yang, P. Study on Inhibition Behaviors of Asphaltene Inhibitor to Asphaltene Aggregations. J. Disper. Sci. Technol. DOI: 10.1080/01932691.2021.1980001.
  • Hashmi, S. M.; Zhong, K. X.; Firoozabadi, A. Acid–Base Chemistry Enables Reversible Colloid-to-Solution Transition of Asphaltenes in Non-Polar Systems. Soft Matter 2012, 8, 8778–8785. DOI: 10.1039/c2sm26003d.
  • Alrashidi, H.; Afra, S.; Nasr-El-Din, H. A. Application of Natural Fatty Acids as Asphaltenes Solvents with Inhibition and Dispersion Effects: A Mechanistic Study. J. Pet. Sci. Eng. 2019, 172, 724–730. DOI: 10.1016/j.petrol.2018.08.066.
  • Hashmi, S. M.; Quintiliano, L. A.; Firoozabadi, A. Polymeric Dispersants Delay Sedimentation in Colloidal Asphaltene Suspensions. Langmuir 2010, 26, 8021–8029. DOI: 10.1021/la9049204.
  • Siskin, M.; Kelemen, S. R.; Gorbaty, M. L.; Ferrughelli, D. T.; Brown, L. D.; Eppig, C. P.; Kennedy, R. J. Chemical Approach to Control Morphology of Coke Produced in Delayed Coking. Energy Fuels 2006, 20, 2117–2124. DOI: 10.1021/ef060261f.
  • Andersen, S. I.; Jensen, J. O.; Speight, J. G. X-Ray Diffraction of Subfractions of Petroleum Asphaltenes. Energy Fuels 2005, 19, 2371–2377. DOI: 10.1021/ef050039v.
  • Yen, T. F.; Erdman, J. G.; Pollack, S. S. Investigation of the Structure of Petroleum Asphaltenes by X-Ray Diffraction. Anal. Chem. 1961, 33, 1587–1594. DOI: 10.1021/ac60179a039.
  • Shirokoff, J. W.; Siddiqui, M. N.; Ali, M. F. Characterization of the Structure of Saudi Crude Asphaltenes by X-Ray Diffraction. Energy Fuels 1997, 11, 561–565. DOI: 10.1021/ef960025c.
  • Bouhadda, Y.; Bormann, D.; Sheu, E.; Bendedouch, D.; Krallafa, A.; Daaou, M. Characterization of Algerian Hassi-Messaoud Asphaltene Structure Using Raman Spectrometry and X-Ray Diffraction. Fuel 2007, 86, 1855–1864. DOI: 10.1016/j.fuel.2006.12.006.
  • Yasar, M.; Akmaz, S.; Gurkaynak, M. A. Investigation of the Molecular Structure of Turkish Asphaltenes. Pet. Sci. Technol. 2009, 27, 1044–1061. DOI: 10.1080/10916460802455913.
  • Bagheri, S. R. Mesophase Formation in Heavy Oil. University of Alberta, Edmonton, AB, 2012, DOI: 10.7939/R30D7N.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.