167
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Adsorptive removal of hazardous crystal violet dye onto banana peel powder: equilibrium, kinetic and thermodynamic studies

, , , &
Pages 475-490 | Received 19 May 2022, Accepted 11 Dec 2022, Published online: 28 Dec 2022

References

  • Anuar, F.; Hadibarata, T.; Syafrudin, M.; et al. Removal of Procion Red MX-5B from Aqueous Solution by Adsorption on Parkia speciosa (Stink Bean) Peel Powder. Biointerface Res. Appl. Chem. 2020, 10, 4774–4779.
  • Reddy, P. M. K.; Verma, P.; Subrahmanyam, C. Bio-Waste Derived Adsorbent Material for Methylene Blue Adsorption. J. Taiwan Inst. Chem. Eng. 2016, 58, 500–508. DOI: 10.1016/j.jtice.2015.07.006.
  • Romero, V.; Vila, V.; de la Calle, I.; Lavilla, I.; Bendicho, C. Turn-on Fluorescent Sensor for the Detection of Periodate Anion following Photochemical Synthesis of Nitrogen and Sulphur Co-Doped Carbon Dots from Vegetables. Sens. Actuators B Chem. 2019, 280, 290–297. DOI: 10.1016/j.snb.2018.10.064.
  • Dey, S.; Islam, A. A Review on Textile Wastewater Characterization in Bangladesh. Res. Environ. 2015, 5, 15–44.
  • Suryawan, I.; Helmy, Q.; Notodarmojo, S. Textile Wastewater Treatment: Colour and COD Removal of Reactive Black-5 by Ozonation. IOP Conf. Ser. Earth Environ. Sci. 2018, 106, 012102.
  • Ahmad, R. Studies on Adsorption of Crystal Violet Dye from Aqueous Solution onto Coniferous pinus Bark Powder (CPBP). J. Hazard Mater. 2009, 171, 767–773. DOI: 10.1016/j.jhazmat.2009.06.060.
  • Chakraborty, S.; Chowdhury, S.; Saha, P. D. Adsorption of Crystal Violet from Aqueous Solution onto NaOH-Modified Rice Husk. Carbohydr. Polym. 2011, 86, 1533–1541. DOI: 10.1016/j.carbpol.2011.06.058.
  • Shakoor, S.; Nasar, A. Utilization of Cucumis sativus Peel as an Eco-Friendly Biosorbent for the Confiscation of Crystal Violet Dye from Artificially Contaminated Wastewater. Anal. Chem. Lett. 2019, 9, 1–19. DOI: 10.1080/22297928.2019.1588162.
  • Jobby, R.; Jha, P.; Yadav, A. K.; Desai, N. Biosorption and Biotransformation of Hexavalent Chromium [Cr (VI)]: A Comprehensive Review. Chemosphere 2018, 207, 255–266. DOI: 10.1016/j.chemosphere.2018.05.050.
  • Katheresan, V.; Kansedo, J.; Lau, S. Y. Efficiency of Various Recent Wastewater Dye Removal Methods: A Review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. DOI: 10.1016/j.jece.2018.06.060.
  • Zhou, Y.; Ge, L.; Fan, N.; Xia, M. Adsorption of Congo Red from Aqueous Solution onto Shrimp Shell Powder. Adsorp. Sci. Technol. 2018, 36, 1310–1330. DOI: 10.1177/0263617418768945.
  • Nasar, A. Polyaniline (PANI) Based Composites for the Adsorptive Treatment of Polluted Water. Smart Polym. Compos. 2018, 21, 40.
  • Mashkoor, F.; Nasar, A. Polyaniline/Tectona grandis Sawdust: A Novel Composite for Efficient Decontamination of Synthetically Polluted Water Containing Crystal Violet Dye. Groundw. Sustain. Dev. 2019, 8, 390–401. DOI: 10.1016/j.gsd.2018.12.008.
  • Singh, H.; Chauhan, G.; Jain, A. K.; Sharma, S. K. Adsorptive Potential of Agricultural Wastes for Removal of Dyes from Aqueous Solutions. J. Environ. Chem. Eng. 2017, 5, 122–135. DOI: 10.1016/j.jece.2016.11.030.
  • Hajati, S.; Ghaedi, M.; Mazaheri, H. Removal of Methylene Blue from Aqueous Solution by Walnut Carbon: Optimization Using Response Surface Methodology. DWT 2016, 57, 3179–3193. DOI: 10.1080/19443994.2014.981217.
  • Oyekanmi, A. A.; Ahmad, A.; Hossain, K.; Rafatullah, M. Statistical Optimization for Adsorption of Rhodamine B Dye from Aqueous Solutions. J. Mol. Liq. 2019, 281, 48–58. DOI: 10.1016/j.molliq.2019.02.057.
  • Noreen, S.; Bhatti, H. N.; Iqbal, M.; Hussain, F.; Sarim, F. M. Chitosan, Starch, Polyaniline and Polypyrrole Biocomposite with Sugarcane Bagasse for the Efficient Removal of Acid Black Dye. Int. J. Biol. Macromol. 2020, 147, 439–452. DOI: 10.1016/j.ijbiomac.2019.12.257.
  • Bhatti, H. N.; Safa, Y.; Yakout, S. M.; Shair, O. H.; Iqbal, M.; Nazir, A. Efficient Removal of Dyes Using Carboxymethyl Cellulose/Alginate/Polyvinyl Alcohol/Rice Husk Composite: Adsorption/Desorption, Kinetics and Recycling Studies. Int. J. Biol. Macromol. 2020, 150, 861–870. DOI: 10.1016/j.ijbiomac.2020.02.093.
  • Tahir, N.; Bhatti, H. N.; Iqbal, M.; Noreen, S. Biopolymers Composites with Peanut Hull Waste Biomass and Application for Crystal Violet Adsorption. Int. J. Biol. Macromol. 2017, 94, 210–220. DOI: 10.1016/j.ijbiomac.2016.10.013.
  • Yang, J.; Ji, G.; Gao, Y.; Fu, W.; Irfan, M.; Mu, L.; Zhang, Y.; Li, A. High-Yield and High-Performance Porous Biochar Produced from Pyrolysis of Peanut Shell with Low-Dose Ammonium Polyphosphate for Chloramphenicol Adsorption. J. Clean. Prod. 2020, 264, 121516. DOI: 10.1016/j.jclepro.2020.121516.
  • Shoukat, S.; Bhatti, H. N.; Iqbal, M.; Noreen, S. Mango Stone Biocomposite Preparation and Application for Crystal Violet Adsorption: A Mechanistic Study. Microporous Mesoporous Mater. 2017, 239, 180–189. DOI: 10.1016/j.micromeso.2016.10.004.
  • Chidi, O.; Kelvin, R. Surface Interaction of Sweet Potato Peels (Ipomoea batata) with Cd (II) and Pb (II) Ions in Aqueous Medium. Chem. Int. 2018, 4, 221–229.
  • Alzate Acevedo, S.; Díaz Carrillo, Á. J.; Flórez-López, E.; Grande-Tovar, C. D. Recovery of Banana Waste-Loss from Production and Processing: A Contribution to a Circular Economy. Molecules 2021, 26, 5282. DOI: 10.3390/molecules26175282.
  • Sharma, R.; Oberoi, H.; Dhillon, G. Fruit and Vegetable Processing Waste: Renewable Feed Stocks for Enzyme Production. Agro-Industrial Wastes as Feedstock for Enzyme Production; Elsevier: Amsterdam; 2016. pp. 23–59.
  • Ahmad, T.; Danish, M. Prospects of Banana Waste Utilization in Wastewater Treatment: A Review. J. Environ. Manage. 2018, 206, 330–348. DOI: 10.1016/j.jenvman.2017.10.061.
  • Nguyen, T. T.; Thi, B. T. N.; Phan, P. T.; et al. Synthesis of Microcrystalline Cellulose from Banana Pseudo-Stem for Adsorption of Organics from Aqueous Solution. Eng Appl Sci Res 2021, 48, 368–378.
  • Pappu, A.; Patil, V.; Jain, S.; Mahindrakar, A.; Haque, R.; Thakur, V. K. Advances in Industrial Prospective of Cellulosic Macromolecules Enriched Banana Biofibre Resources: A Review. Int. J. Biol. Macromol. 2015, 79, 449–458. DOI: 10.1016/j.ijbiomac.2015.05.013.
  • Danish, M.; Ahmad, T.; Majeed, S.; Ahmad, M.; Ziyang, L.; Pin, Z.; Shakeel Iqubal, S. M. Use of Banana Trunk Waste as Activated Carbon in Scavenging Methylene Blue Dye: Kinetic, Thermodynamic, and Isotherm Studies. Bioresour. Technol. Rep. 2018, 3, 127–137. DOI: 10.1016/j.biteb.2018.07.007.
  • Vu, H. T.; Scarlett, C. J.; Vuong, Q. V. Phenolic Compounds within Banana Peel and Their Potential Uses: A Review. J. Funct. Foods. 2018, 40, 238–248. DOI: 10.1016/j.jff.2017.11.006.
  • Lavanya, K. M.; Florence, J. A. K.; Vivekanandan, B.; Lakshmipathy, R. Comparative Investigations of Raw and Alkali Metal Free Banana Peel as Adsorbent for the Removal of Hg2+ Ions. Mater. Today: Proc. 2022, 55, 321–326. DOI: 10.1016/j.matpr.2021.07.410.
  • Çatlıoğlu, F.; Akay, S.; Turunç, E.; Gözmen, B.; Anastopoulos, I.; Kayan, B.; Kalderis, D. Preparation and Application of Fe-Modified Banana Peel in the Adsorption of Methylene Blue: Process Optimization Using Response Surface Methodology. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100517. DOI: 10.1016/j.enmm.2021.100517.
  • Kapoor, R. T.; Rafatullah, M.; Siddiqui, M. R.; Khan, M. A.; Sillanpää, M. Removal of Reactive Black 5 Dye by Banana Peel Biochar and Evaluation of Its Phytotoxicity on Tomato. Sustainability 2022, 14, 4176. DOI: 10.3390/su14074176.
  • Mondal, N. K.; Kar, S. Potentiality of Banana Peel for Removal of Congo Red Dye from Aqueous Solution: Isotherm, Kinetics and Thermodynamics Studies. Appl. Water Sci. 2018, 8, 1–12. DOI: 10.1007/s13201-018-0811-x.
  • Deshmukh, P. D.; Khadse, G. K.; Shinde, V. M.; Labhasetwar, P. Cadmium Removal from Aqueous Solutions Using Dried Banana Peels as an Adsorbent: Kinetics and Equilibrium Modeling. J. Bioremediat. Biodegrad. 2017, 8, 1–7. DOI: 10.4172/2155-6199.1000395.
  • Memon, S. Q.; Memon, J. R.; Bhanger, M. I.; et al. Banana Peel: A Green and Economical Sorbent for Cr (III) Removal. Pak. J. Anal. Environ. Chem. 2008, 9, 6.
  • Zango, Z. U. Cationic Dyes Removal Using Low-Cost Banana Peel Biosorbent. Am. J. Mater. Sci. 2018, 8, 32–38.
  • Hossain, M.; Ngo, H. H.; Guo, W.; et al. Removal of Copper from Water by Adsorption onto Banana Peel as Bioadsorbent. Geomate 2012, 2, 227–234. DOI: 10.21660/2012.4.3c.
  • Abdul Karim, S. K.; Lim, S. F.; Chua, S. N. D.; Salleh, S. F.; Law, P. L. Banana Fibers as Sorbent for Removal of Acid Green Dye from Water. J. Chem. 2016, 2016, 1–11. DOI: 10.1155/2016/9648312.
  • Yusuff, S. Adsorption of Cationic Dye from Aqueous Solution Using Composite Chicken Eggshell Anthill Clay: Optimization of Adsorbent Preparation Conditions. Acta Polytech. 2019, 59, 192–202. DOI: 10.14311/AP.2019.59.0192.
  • Ghosh, K.; Bar, N.; Biswas, A. B.; Das, S. K. Elimination of Crystal Violet from Synthetic Medium by Adsorption Using Unmodified and Acid-Modified Eucalyptus Leaves with MPR and GA Application. Sustain. Chem. Pharm. 2021, 19, 100370. DOI: 10.1016/j.scp.2020.100370.
  • Tay, C.-I.; Ong, S.-T, Universiti Tunku Abdul Rahman, Malaysia. Guava Leaves as Adsorbent for the Removal of Emerging Pollutant: Ciprofloxacin from Aqueous Solution. JPS 2019, 30, 137–156. DOI: 10.21315/jps2019.30.2.8.
  • Alshabanat, M.; Alsenani, G.; Almufarij, R. Removal of Crystal Violet Dye from Aqueous Solutions onto Date Palm Fiber by Adsorption Technique. J. Chem. 2013, 2013, 1–6. DOI: 10.1155/2013/210239.
  • Lam, C. Y. Removal of Crystal Violet from Aqueous Solution using Banana Peel; UTAR, 2020.
  • Etim, U.; Umoren, S.; Eduok, U. Coconut Coir Dust as a Low Cost Adsorbent for the Removal of Cationic Dye from Aqueous Solution. J. Saudi Chem. Soc. 2016, 20, S67–S76. DOI: 10.1016/j.jscs.2012.09.014.
  • Muthukumaran, C.; Sivakumar, V. M.; Thirumarimurugan, M. Adsorption Isotherms and Kinetic Studies of Crystal Violet Dye Removal from Aqueous Solution Using Surfactant Modified Magnetic Nanoadsorbent. J. Taiwan Inst. Chem. Eng. 2016, 63, 354–362. DOI: 10.1016/j.jtice.2016.03.034.
  • Cheruiyot, G. K.; Wanyonyi, W. C.; Kiplimo, J. J.; Maina, E. N. Adsorption of Toxic Crystal Violet Dye Using Coffee Husks: Equilibrium, Kinetics and Thermodynamics Study. Sci. Afr. 2019, 5, e00116. DOI: 10.1016/j.sciaf.2019.e00116.
  • Varlikli, C.; Bekiari, V.; Kus, M.; Boduroglu, N.; Oner, I.; Lianos, P.; Lyberatos, G.; Icli, S. Adsorption of Dyes on Sahara Desert Sand. J. Hazard Mater. 2009, 170, 27–34. DOI: 10.1016/j.jhazmat.2009.05.030.
  • Yao, Z.-Y.; Qi, J.-H.; Wang, L.-H. Equilibrium, Kinetic and Thermodynamic Studies on the Biosorption of Cu (II) onto Chestnut Shell. J. Hazard Mater. 2010, 174, 137–143. DOI: 10.1016/j.jhazmat.2009.09.027.
  • Al-Shehri, H. S.; Almudaifer, E.; Alorabi, A. Q.; Alanazi, H. S.; Alkorbi, A. S.; Alharthi, F. A. Effective Adsorption of Crystal Violet from Aqueous Solutions with Effective Adsorbent: Equilibrium, Mechanism Studies and Modeling Analysis. Env. Pollut. Bioavail. 2021, 33, 214–226. DOI: 10.1080/26395940.2021.1960199.
  • Arora, C.; Sahu, D.; Bharti, D.; Tamrakar, V.; Soni, S.; Sharma, S. Adsorption of Hazardous Dye Crystal Violet from Industrial Waste Using Low-Cost Adsorbent Chenopodium Album. DWT 2019, 167, 324–332. DOI: 10.5004/dwt.2019.24595.
  • Menkiti, M. C.; Aniagor, C. O.; Agu, C. M.; Ugonabo, V. I. Effective Adsorption of Crystal Violet Dye from an Aqueous Solution Using Lignin-Rich Isolate from Elephant Grass. Water Conserv. Sci. Eng. 2018, 3, 33–46. DOI: 10.1007/s41101-017-0040-4.
  • Dalal, R. Desorption of Soil Phosphate by Anion‐Exchange Resin. Commun. Soil Sci. Plant Anal. 1974, 5, 531–538. DOI: 10.1080/00103627409366531.
  • Sparks, D. Kinetics of Reactions in Pure and Mixed Systems. In Soil Physical Chemistry; Sparks, D. L., Eds.; CRC Press: Boca Raton, FL; 1986; pp. 83–145.
  • Olaosebikan, A. O.; Victor, E. B.; Kehinde, O. A.; Adebukola, M. B. Isotherms, Kinetic and Thermodynamic Studies of Methylene Blue Adsorption on Chitosan Flakes Derived from African Giant Snail Shell. Afr. J. Environ. Sci. Technol 2022, 16, 37–70. DOI: 10.5897/AJEST2021.3065.
  • Okewale, A.; Babayemi, K.; Olalekan, A. Adsorption Isotherms and Kinetics Models of Starchy Adsorbents on Uptake of Water from Ethanol–Water Systems. Int. J. Appl. Sci. Technol. 2013, 3, 35–42.
  • Bouziane, N.; Aloui, A.; Behloul, S.; et al. Kinetic Models of Aqueous 2-Mercaptobenzothiazole Adsorption on Local Clay and Activated Carbon. Rev. Roum. Chim. 2021, 66, 479–491.
  • Musah, M.; Azeh, Y.; Mathew, J.; Umar, M.; Abdulhamid, Z.; Muhammad, A. Adsorption Kinetics and Isotherm Models: A Review. CaJoST 2022, 4, 20–26. DOI: 10.4314/cajost.v4i1.3.
  • Srihari, V.; Das, A. The Kinetic and Thermodynamic Studies of Phenol-Sorption onto Three Agro-Based Carbons. Desalination 2008, 225, 220–234. DOI: 10.1016/j.desal.2007.07.008.
  • Weber, W. J.; Jr.; Morris, J. C. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Engrg. Div. 1963, 89, 31–59. DOI: 10.1061/JSEDAI.0000430.
  • Zhou, Y.; Liu, X.; Xiang, Y.; Wang, P.; Zhang, J.; Zhang, F.; Wei, J.; Luo, L.; Lei, M.; Tang, L.; et al. Modification of Biochar Derived from Sawdust and Its Application in Removal of Tetracycline and Copper from Aqueous Solution: Adsorption Mechanism and Modelling. Bioresour. Technol. 2017, 245, 266–273. DOI: 10.1016/j.biortech.2017.08.178.
  • Ahmad Khan, F.; Ahad, A.; Shah, S. S.; Farooqui, M. Adsorption of Crystal Violet Dye Using Platanus orientalis (Chinar Tree) Leaf Powder and Its Biochar: Equilibrium, Kinetics and Thermodynamics Study. Int. J. Environ. Anal. Chem. 2021, 101, 1–21. DOI: 10.1080/03067319.2021.1931854.
  • Hall, K. R.; Eagleton, L. C.; Acrivos, A.; Vermeulen, T. Pore- and Solid-Diffusion Kinetics in Fixed-Bed Adsorption under Constant-Pattern Conditions. Ind. Eng. Chem. Fund 1966, 5, 212–223. DOI: 10.1021/i160018a011.
  • Tempkin, M.; Pyzhev, V. Kinetics of Ammonia Synthesis on Promoted Iron Catalyst. Acta Phys. Chim. USSR 1940, 12, 327.
  • Aharoni, C.; Ungarish, M. Assessment of Environmental and Solution Parameter Impact on Trace-Metal Sorption by Soils. J. Chem. Soc., Faraday Trans. 1 1977, 73, 456–464. DOI: 10.1039/f19777300456.
  • Vickers, N. J. Animal Communication: When I’m Calling You, Will You Answer Too? Curr. Biol. 2017, 27, R713–R715. DOI: 10.1016/j.cub.2017.05.064.
  • Machida, M.; Yamazaki, R.; Aikawa, M.; Tatsumoto, H. Adsorption of Pb (II) from Aqueous Solution onto Charcoal and Activated Carbon. TANSO 2005, 2005, 13–18. DOI: 10.7209/tanso.2005.13.
  • Samarghandi, M.; Hadi, M.; Moayedi, S. Two-Parameter Isotherms of Methyl Orange Sorption by Pinecone Derived Activated Carbon. IJEHSE 2009, 6, 285–294.
  • Ehiomogue, P.; Ahuchaogu, I. I.; Ahaneku, I. E. Review of Adsorption Isotherms Models. Acta Tech. Corvin, Bull. Eng. 2021, 14, 87–96.
  • Popoola, L. T. Characterization and Adsorptive Behaviour of Snail Shell-Rice Husk (SS-RH) Calcined Particles (CPs) towards Cationic Dye. Heliyon 2019, 5, e01153. DOI: 10.1016/j.heliyon.2019.e01153.
  • Ragadhita, R.; Nandiyanto, A. B. D. How to Calculate Adsorption Isotherms of Particles Using Two-Parameter Monolayer Adsorption Models and Equations. Indones. J. Sci. Technol 2021, 6, 205–234. DOI: 10.17509/ijost.v6i1.32354.
  • Allen, S.; Mckay, G.; Porter, J. F. Adsorption Isotherm Models for Basic Dye Adsorption by Peat in Single and Binary Component Systems. J. Colloid Interface Sci. 2004, 280, 322–333. DOI: 10.1016/j.jcis.2004.08.078.
  • Sivarajasekar, N.; Baskar, R. Adsorption of Basic Magenta II onto H2SO4 Activated Immature Gossypium hirsutum Seeds: Kinetics, Isotherms, Mass Transfer, Thermodynamics and Process Design. Arab. J. Chem. 2019, 12, 1322–1337. DOI: 10.1016/j.arabjc.2014.10.040.
  • Batool, M.; Javed, T.; Wasim, M.; Zafar, S.; Din, M. I. Exploring the Usability of Cedrus deodara Sawdust for Decontamination of Wastewater Containing Crystal Violet Dye. DWT 2021, 224, 433–448. DOI: 10.5004/dwt.2021.27192.
  • Gupta, S.; Sireesha, S.; Sreedhar, I.; Patel, C. M.; Anitha, K. L. Latest Trends in Heavy Metal Removal from Wastewater by Biochar Based Sorbents. J. Water Process. Eng. 2020, 38, 101561. DOI: 10.1016/j.jwpe.2020.101561.
  • Vilar, V. J.; Botelho, C. M.; Boaventura, R. A. Copper Desorption from Gelidium Algal Biomass. Water Res. 2007, 41, 1569–1579. DOI: 10.1016/j.watres.2006.12.031.
  • Ramrakhiani, L.; Halder, A.; Majumder, A.; Mandal, A. K.; Majumdar, S.; Ghosh, S. Industrial Waste Derived Biosorbent for Toxic Metal Remediation: Mechanism Studies and Spent Biosorbent Management. Chem. Eng. J. 2017, 308, 1048–1064. DOI: 10.1016/j.cej.2016.09.145.
  • Singh, S.; Gupta, H.; Dhiman, S.; Sahu, N. K. Decontamination of Cationic Dye Brilliant Green from the Aqueous Media. Appl. Water Sci. 2022, 12, 1–10. DOI: 10.1007/s13201-022-01596-5.
  • Akter, M.; Rahman, F. B. A.; Abedin, M. Z.; Kabir, S. M. F. Adsorption Characteristics of Banana Peel in the Removal of Dyes from Textile Effluent. Textiles 2021, 1, 361–375. DOI: 10.3390/textiles1020018.
  • Abbasi, F.; Tavakkoli Yaraki, M.; Farrokhnia, A.; Bamdad, M. Keratin Nanoparticles Obtained from Human Hair for Removal of Crystal Violet from Aqueous Solution: Optimized by Taguchi Method. Int. J. Biol. Macromol. 2020, 143, 492–500. DOI: 10.1016/j.ijbiomac.2019.12.065.
  • Akinola, L.; Umar, A. Adsorption of Crystal Violet onto Adsorbents Derived from Agricultural Wastes: Kinetic and Equilibrium Studies. J. Appl. Sci. Environ. Manag. 2015, 19, 279–288. DOI: 10.4314/jasem.v19i2.15.
  • Tangestani, M.; Naeimi, B.; Dobaradaran, S.; Keshtkar, M.; Salehpour, P.; Fouladi, Z.; Zareipour, S.; Sadeghzadeh, F. Biosorption of Fluoride from Aqueous Solutions by Rhizopus oryzae: Isotherm and Kinetic Evaluation. Env. Prog. Sustain. Energy 2022, 41, e13725. DOI: 10.1002/ep.13725.
  • Bukhari, A.; Javed, T.; Haider, M. N. Adsorptive Exclusion of Crystal Violet Dye from Wastewater by Using Fish Scales as an Adsorbent. J. Dispersion Sci. Technol. 2022, 43, 1–12. DOI: 10.1080/01932691.2022.2059506.
  • Chinniagounder, T.; Shanker, M.; Nageswaran, S. Adsorptive Removal of Crystal Violet Dye Using Agricultural Waste Cocoa (Theobroma cacao) Shell. Res. J. Chem. Sci. 2011, 1, 38–45.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.