38
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Stability optimization of orthovanadate nanoparticles in biocompatible media

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 161-170 | Received 29 Jul 2021, Accepted 22 Sep 2022, Published online: 28 Dec 2022

References

  • Dong, H.; Du, S.-R.; Zheng, X.-Y.; Lyu, G.-M.; Sun, L.-D.; Li, L. D.; Zhang, P.-Z.; Zhang, C.; Yan, C.-H. Lanthanide Nanoparticles: From Design toward Bioimaging and Therapy. Chem. Rev. 2015, 115, 10725–10815. DOI: 10.1021/acs.chemrev.5b00091.
  • Bouzigues, C.; Gacoin, T.; Alexandrou, A. Biological Applications of Rare-Earth Based Nanoparticles. ACS Nano 2011, 5, 8488–8505. DOI: 10.1021/nn202378b.
  • Averchenko, E. A.; Kavok, N. S.; Klochkov, V. K.; Malyukin, Y. V. Chemiluminescent Diagnostics of Free-Radical Processes in an Abiotic System and in Liver Cells in the Presence of Nanoparticles Based on Rare-Earth Elements ReVO4:Eu3+ (Re = Gd, Y, La) and CeO2. J. Appl. Spectrosc. 2014, 81, 827–833. DOI: 10.1007/s10812-014-0012-9.
  • Nikitchenko, Y. V.; Klochkov, V. K.; Kavok, N. S.; Karpenko, N. A.; Yefimova, S. L.; Nikitchenko, I. V.; Bozhkov, A. I. Age-Related Effects of Orthovanadate Nanoparticles Involve Activation of GSH-Dependent Antioxidant System in Liver Mitochondria. Biol. Trace Elem. Res. 2021, 199, 649–659. DOI: 10.1007/s12011-020-02196-7.
  • Yefimova, S. L.; Maksimchuk, P. O.; Seminko, V. V.; Kavok, N. S.; Klochkov, V. K.; Hubenko, K. A.; Sorokin, A. V.; Kurilchenko, I.; Malyukin, Y. V. Janus-Faced Redox Activity of LnVO4:Eu3+ (Ln = Gd, Y, and La). J. Phys. Chem. C 2019, 123, 15323–15329. DOI: 10.1021/acs.jpcc.9b03040.
  • Nikitchenko, Y. V.; Klochkov, V. K.; Kavok, N. S.; Karpenko, N. A.; Sedyh, O. O.; Bozhkov, A. I.; Malyukin, Y.; Semynozhenko, V. P, Gadolinium Orthovanadate Nanoparticles Increase Survival of Old Rats. Dopov. Nac. Akad. Nauk. Ukr. 2020, 2, 29–36. DOI: 10.15407/dopovidi2020.02.029.
  • Karpenko, N. O.; Korenieva, Y. M.; Chystiakova, E. Y.; Smolienko, N. P.; Bielkina, I. O.; Seliukova, N.; Yu, Kustova, S. P.; Boiko, M. O.; Larianovska, Yu, B.; Klochkov, V. K.; et al. The Influence of the Rare-Earth Metals Nanoparticles on the Rat’s Males Reproductive Function in the Descending Stage of Ontogenesis. Ukr. Bìofarm. ž 2016, 0, 75–80. DOI: 10.24959/ubphj.16.59.
  • Trevino, S.; González-Vergara, E. Metformin-Decavanadate Treatment Ameliorates Hyperglycemia and Redox Balance of the Liver and Muscle in a Rat Model of Alloxan-Induced Diabetes. New J. Chem. 2019, 43, 17850–17862. DOI: 10.1039/C9NJ02460C.
  • Rehder, D. Perspectives for Vanadium in Health Issues. Future Med. Chem. 2016, 8, 325–338. DOI: 10.4155/fmc.15.187.
  • Tripathi, D.; Mani, V.; Pal, R. P. Vanadium in Biosphere and Its Role in Biological Processes. Biol. Trace Elem. Res. 2018, 186, 52–67. DOI: 10.1007/s12011-018-1289-y.
  • Pessoa, J. C.; Etcheverry, S.; Gambino, D. Vanadium Compounds in Medicine. Coord. Chem. Rev. 2015, 301, 24–48. DOI: 10.1016/j.ccr.2014.12.002.
  • Pessoa, J. C.; Garribba, E.; Santos, M.; Santos-Silva, T. Vanadium and Proteins: Uptake, Transport, Structure, Activity and Function. Coord. Chem. Rev. 2015, 301-302, 49–86. DOI: 10.1016/j.ccr.2015.03.016.
  • Rehder, D.; Pessoa, J. C.; Geraldes, C.; Castro, M. M.; Kabanos, T.; Kiss, T.; Meier, B.; Micera, G.; Pettersson, L.; Rangel, M.; et al. In Vitro Study of the Insulin-Mimetic Behaviour of Vanadium (IV,V) Coordination Compounds. J. Biol. Inorg. Chem. 2002, 7, 384–396. DOI: 10.1007/s00775-001-0311-5.
  • Tkachenko, A. S.; Klochkov, V. K.; Lesovoy, V. N.; Myasoedov, V. V.; Kavok, N. S.; Onishchenko, A. I.; Yefimova, S. L.; Posokhov.; Ye, O. Orally Administered Gadolinium Orthovanadate GdVO4:Eu3+ Nanoparticles Do Not Affect the Hydrophobic Region of Cell Membranes of Leukocytes. Wien Med Wochenschr. 2020, 170, 189–195. DOI: 10.1007/s10354-020-00735-4.
  • Klochkov, V. K.; Kaliman, V. P.; Karpenko, N.; Kavok, A.; Malyukina, N. S.; Yu, M.; Yefimova, S. L.; Malyukin, Y. V, In Vivo Effects of Rare-Earth Based Nanoparticles on Oxidative Balance in Rats. Biotechnol. Acta 2016, 9, 72–81. DOI: 10.15407/biotech9.06.072.
  • Wörle-Knirsch, J. M.; Kern, K.; Schleh, C.; Adelhelm, C.; Feldmann, C.; Krug, H. F. Nanoparticulate Vanadium Oxide Potentiated Vanadium Toxicity in Human Lung Cells. Environ. Sci. Technol. 2007, 41, 331–336. DOI: 10.1021/es061140x.
  • Ji, Z.; Jin, X.; Saji, G.; Xia, T.; Meng, H.; Wang, X.; Suarez, E.; Zhang, H.; Hoek, E. M. V.; Godwin, H.; et al. Dispersion and Stability Optimization of TiO2 Nanoparticles in Cell Culture Media. Environ. Sci. Technol. 2010, 44, 7309–7314. DOI: 10.1021/es100417s.
  • Maiorano, G.; Sabella, S.; Sorce, B.; Brunetti, V.; Malvindi, M. A.; Cingolani, R.; Pompa, P. P. Effects of Cell Culture Media on the Dynamic Formation of Protein − Nanoparticle Complexes and Influence on the Cellular Response. ACS Nano 2010, 4, 7481–7491. DOI: 10.1021/nn101557e.
  • Metin, C. O.; Lake, L. W.; Miranda, C. R.; Nguyen, Q. P. Stability of Aqueous Silica Nanoparticle Dispersions. J. Nanopart. Res. 2011, 13, 839–850. DOI: 10.1007/s11051-010-0085-1.
  • Sager, T. M.; Wolfarth, M.; Leonard, S. S.; Morris, A. M.; Porter, D. W.; Castranova, V.; Holian, A. Role of Engineered Metal Oxide Nanoparticle Agglomeration in Reactive Oxygen Species Generation and Cathespin B Release in NlRP3 Inflammasome Activation and Pulmonary Toxicity. Inhal. Toxicol. 2016, 28, 686–697. DOI: 10.1080/08958378.2016.1257664.
  • Moore, T. L.; Rodriguez-Lorenzo, L.; Hirsch, V.; Balog, S.; Urban, D.; Jud, C.; Rothen-Rutishauser, B.; Lattuada, M.; Petri-Fink, A. Nanoparticle Colloidal Stability in Cell Culture Media and Impact on Cellular Interactions. Chem. Soc. Rev. 2015, 44, 6287–6305. DOI: 10.1039/C4CS00487F.
  • Oriekhova, O.; Le Coustumer, P.; Stoll, S. Impact of Biopolymer Coating on the Colloidal Stability of Manufactured CeO2 Nanoparticles in Contrasting Water Conditions. Colloids. Surf. A 2017, 533, 267–274. DOI: 10.1016/j.colsurfa.2017.07.069.
  • Bihari, P.; Vippola, M.; Schultes, S.; Praetner, M.; Khandoga, A. G.; Reichel, C.; Coester, C.; Tuomi, T.; Rehberg, M.; Krombach, F. Optimized Dispersion of Nanoparticles for Biological in Vitro and in Vivo Studies. Part Fibre Toxicol. 2008, 5, 14–28. DOI: 10.1186/1743-8977-5-14.
  • George, S.; Pokhrel, S.; Xia, T.; Gilbert, B.; Ji, Z.; Schowalter, M.; Rosenauer, A.; Damoiseaux, R.; Bradley, K. A.; Mädler, L.; Nel, A. E. Use of a Rapid Cytotoxicity Screening Approach to Engineer a Dafer Zinc Oxide Nanoparticle through Iron Doping. ACS Nano 2010, 4, 15–29. DOI: 10.1021/nn901503q.
  • Ellingsen, J. E. A Study on the Mechanism of Protein Adsorption to TiO2. Biomaterials 1991, 12, 593–596. DOI: 10.1016/0142-9612(91)90057-h.
  • Baran, E. J. Model Studies Related to Vanadium Biochemistry: Recent Advances and Perspectives. J. Braz. Chem. Soc. 2003, 14, 878–888. DOI: 10.1590/S0103-50532003000600004.
  • Casey, A.; Davoren, M.; Herzog, E.; Lyng, F. M.; Byrne, H. J.; Chambers, G. Probing the Interaction of Single Walled Carbon Nanotubes within Cell Culture Medium as a Precursor to Toxic Testing. Carbon 2007, 45, 34–40. DOI: 10.1016/j.carbon.2006.08.009.
  • Chen, Z. P.; Xu, R. Z.; Zhang, Y.; Gu, N. Effects of Proteins from Culture Medium on Surface Property of Silanes-Functionalized Magnetic Nanoparticles. Nanosc. Res. Lett. 2008, 4, 204–209. DOI: 10.1007/s11671-008-9226-1.
  • Chen, Z. P.; Zhang, Y.; Xu, K.; Xu, R. Z.; Liu, J. W.; Gu, N. Stability of Hydrophilic Magnetic Nanoparticles under Biologically Relevant Conditions. J. Nanosci. Nanotechnol. 2008, 8, 6260–6265. DOI: 10.1166/jnn.2008.343.
  • Wiogo, H. T. R.; Lim, M.; Bulmus, V.; Bulmus, V.; Yun, J.; Amal, R. Stabilization of Magnetic Iron Oxide Nanoparticles in Biological Media by Fetal Bovine Serum (FBS). Langmuir 2011, 27, 843–850. DOI: 10.1021/la104278m.
  • Kavok, N.; Grygorova, G.; Klochkov, V.; Yefimova, S. The Role of Serum Proteins in the Stabilization of Colloidal LnVO4:Eu3+ (Ln = La, Gd, Y) and CeO2 Nanoparticles. Colloids. Surf. A 2017, 529, 594–599. DOI: 10.1016/j.colsurfa.2017.06.052.
  • Klochkov, V. K. The Water Solution of Nanoluminophores nReVO4:Eu3+ (Re = Y, Gd, La). Nanostrukt. Mater. 2009, 2, 3–8.
  • Klochkov, V. K.; Malyshenko, A. I.; Sedyh, O. O.; Malyukin, Y. Wet-Chemical Synthesis and Characterization of Luminescent Colloidal Nanoparticles: ReVO4:Eu3+ (Re = La, Gd, Y) with Rod-Like and Spindle-Like Shape. Funct. Mater. 2011, 18, 111–115.
  • Israelachvili, J. N. Intermolecular and Surface Forces, 2nd ed.; Academic Press: London, 1992.
  • Pavlin, M.; Bregar, V. B. Stability of Nanoparticle Suspensions in Different Biologically Relevant Media. Digest J. Nanomater. Biostruct. 2012, 7, 1389–1400.
  • Napper, H. Polymeric Stabilization of Colloidal Dispersions, London: Academic Press, 1983. DOI: 10.1002/pi.4980180420.
  • Molina-Bolivar, J. A.; Ortega-Vinuesa, J. L. How Proteins Stabilize colloidal particles by Means of Hydration Forces. Langmuir 1999, 15, 2644–2653. DOI: 10.1021/la981445s.
  • Nie, J.; Lilley, B. N.; Pan, Y. A.; Faruque, O.; Liu, X.; Zhang, W.; Sanes, J. R.; Han, X.; Shi, Y. SAD-A Potentiates Glucose-Stimulated Insulin Secretion as a Mediator of Glucagon-like Peptide 1 Response in Pancreatic β Cells. Mol. Cell Biol. 2013, 33, 2527–2534. DOI: 10.1128/MCB.00285-13.
  • Brewer, S. H.; Glomm, W. R.; Johnson, M. C.; Johnson, M. C.; Knag, M. K.; Franzen, S. Probing BSA Binding to Citrate-Coated Gold Nanoparticles and Surfaces. Langmuir 2005, 21, 9303–9307. DOI: 10.1021/la050588t.
  • Giacomelli, C. E.; Avena, M. J.; De Pauli, C. P. Adsorption of Bovine Serum Albumin onto TiO2 Particles. J. Colloid. Interface Sci. 1997, 188, 387–395. DOI: 10.1006/jcis.1996.4750.
  • Domingos, R. F.; Tufenkji, N.; Wilkinson, K. J. Aggregation of Titanium Dioxide Nanoparticles: Role of a Fulvic Acid. Environ. Sci. Technol. 2009, 43, 1282–1286. DOI: 10.1021/es8023594.
  • Wassell, D. T. H.; Hall, R. C.; Embery, G. Adsorption of Bovine Serum-Albumin onto Hydroxyapatite. Biomaterials 1995, 16, 697–702. DOI: 10.1016/0142-9612(95)99697-K.
  • Horie, M.; Nishio, K.; Fujita, K.; Endoh, S.; Miyauchi, A.; Saito, Y.; Iwahashi, H.; Yamamoto, K.; Murayama, H.; Nakano, H.; et al. Protein Adsorption of Ultrafine Metal Oxide and Its Influence on Cytotoxicity toward Cultured Cells. Chem. Res. Toxicol. 2009, 22, 543–553. DOI: 10.1021/tx800289z.
  • Holmberg, K. Handbook of Applied Colloid and Surface Science. John Wiley Sons: New York, 2001.
  • Kallay, N.; Žalac, S. Stability of Nanodispersions: A Model for Kinetics of Aggregation of Nanoparticles. J. Colloid Interface Sci. 2002, 253, 70–76. DOI: 10.1006/jcis.2002.8476.
  • Strojan, K.; Leonardi, A.; Bregar, V. B.; Križaj, I.; Svete, J.; Pavlin, M. Dispersion of Nanoparticles in Different Media Importantly Determines the Composition of Their Protein Corona. PLoS One. 2017, 12, e0169552. DOI: 10.1371/journal.pone.0169552.
  • Grygorova, G.; Klochkov, V.; Sedyh, O.; Malyukin, Y. Aggregative Stability of Colloidal ReVO4:Eu3+ (Re = La, Gd, Y) Nanoparticles with Different Particle Sizes. Colloids Surf. A 2014, 457, 495–501. DOI: 10.1016/j.colsurfa.2014.06.024.
  • Lordan, S.; Higginbotham, C. L. Effect of Serum Concentration on the Cytotoxicity of Clay Particles. Cell Biol. Int. 2012, 36, 57–61. DOI: 10.1042/CBI20100587.
  • Safi, M.; Courtois, J.; Seigneuret, M.; Conjeaud, H.; Berret, J.-F. The Effects of Aggregation and Protein Corona on the Cellular Internalization of Iron Oxide Nanoparticles. Biomaterials 2011, 32, 9353–9363. DOI: 10.1016/j.biomaterials.2011.08.048.
  • Monopoli, M. P.; Walczyk, D.; Campbell, A.; Elia, G.; Lynch, I.; Baldelli Bombelli, F.; Dawson, K. A. Physical − Chemical Aspects of Protein Corona: Relevance to in Vitro and in Vivo Biological Impacts of Nanoparticles. J. Am. Chem. Soc. 2011, 133, 2525–2534. DOI: 10.1021/ja107583h.
  • Lartigue, L.; Wilhelm, C.; Servais, J.; Factor, C.; Dencausse, A.; Bacri, J.-C.; Luciani, N.; Gazeau, F. Nanomagnetic Sensing of Blood Plasma Protein Interactions with Iron Oxide Nanoparticles: Impact on Macrophage Uptake. ACS Nano 2012, 6, 2665–2678. DOI: 10.1021/nn300060u.
  • Behzadi, S.; Serpooshan, V.; Sakhtianchi, R.; Müller, B.; Landfester, K.; Crespy, D.; Mahmoudi, M. Protein Corona Change the Drug Release Profile of Nanocarriers: The “Overlooked” Factor at the Nanobio Interface. Colloids Surf. B Biointerfaces 2014, 123, 143–149. DOI: 10.1016/j.colsurfb.2014.09.009.
  • Kumar, D.; Chandra, A.; Singh, M. Influence of Imidazolium Ionic Liquids on the Interactions of Human Hemoglobin with DyCl3, ErCl3, and YbCl3 in Aqueous Citric Acid at T=(298.15, 303.15, and 308.15) K and 0.1 MPa. J. Chem. Eng. Data 2017, 62, 665–683. DOI: 10.1021/acs.jced.6b00695.
  • Chetty, R.; Singh, M. In-Vitro Interaction of Cerium Oxide Nanoparticles with Hemoglobin, Insulin, and dsDNA at 310.15 K: Physicochemical, Spectroscopic and in-Silico Study. Int. J. Biol. Macromol. 2020, 156, 1022–1044. DOI: 10.1016/j.ijbiomac.2020.03.067.
  • Chetty, R.; Pandya, S. R.; Singh, M. Physicochemical Interaction of Cerium Oxide Nanoparticles with Simulated Biofluids, Hemoglobin, Insulin, and ds-DNA at 310.15 K. New J. Chem. 2020, 44, 1825–1845. DOI: 10.1039/C9NJ04155A.
  • Hansen, U.; Thünemann, A. F. Characterization of Silver Nanoparticles in Cell Culture Medium Containing Fetal Bovine Serum. Langmuir 2015, 31, 6842–6852. DOI: 10.1021/acs.langmuir.5b00687.
  • Vashistha, N.; Chandra, A.; Singh, M. HSA Functionalized Gd2O3:Eu3+ Nanoparticles as an MRI Contrast Agent and a Potential Luminescent Probe for Fe3+, Cr3+, and Cu2+ Detection in Water. New J. Chem. 2020, 44, 14211–14227. DOI: 10.1039/D0NJ02960B.
  • Sabuncu, A. C.; Grubbs, J.; Qian, S.; Abdel-Fattah, T. M.; Stacey, M. W.; Beskok, A. Probing Nanoparticle Interactions in Cell Culture Media. Colloids Surf. B Biointerfaces 2012, 95, 96–102. DOI: 10.1016/j.colsurfb.2012.02.022.
  • Mohr, K.; Sommer, M.; Baier, G.; Schöttler, S.; Okwieka, P.; Tenzer, S.; Landfester, K.; Mailänder, V.; Schmidt, M.; Meyer, R. Aggregation Behavior of Polystyrene-Nanoparticles in Human Blood Serum and Its Impact on the in Vivo Distribution in Mice. J. Nanomed. Nanotechnol. 2014, 5, 1–10. DOI: 10.4172/2157-7439.1000193.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.