52
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Co-delivery of trifluralin and miltefosin with enhanced skin penetration and localization in Leishmania affected macrophages

Pages 355-367 | Received 01 Jul 2022, Accepted 18 Oct 2022, Published online: 12 Jan 2023

References

  • Reithinger, R.; Dujardin, J. C.; Louzir, H.; Pirmez, C.; Alexander, B.; Brooker, S. Cutaneous Leishmaniasis. Lancet Infect. Dis. 2007, 7, 581–596. DOI: 10.1016/S1473-3099(07)70209-8.
  • Turan, E.; Kandemir, H.; Yeşilova, Y.; Ekinci, S.; Tanrıkulu, O.; Kandemir, S. B.; Gurel, M. S. Assessment of Psychiatric Morbidity and Quality of Life in Children and Adolescents with Cutaneous Leishmaniasis and Their Parents. Postepy Dermatol. Alergol. 2015, 32, 344–348. DOI: 10.5114/pdia.2015.54744.
  • Burza, S.; Croft, S. L.; Boelaert, M. Leishmaniasis. Lancet 2018, 392, 951–970. DOI: 10.1016/S0140-6736(18)31204-2.
  • Aronson, N.; Herwaldt, B. L.; Libman, M.; Pearson, R.; Lopez-Velez, R.; Weina, P.; Carvalho, E.; Ephros, M.; Jeronimo, S.; Magill, A. Diagnosis and Treatment of Leishmaniasis: Clinical Practice Guidelines by the Infectious Diseases Society of America (IDSA) and the American Society of Tropical Medicine and Hygiene (ASTMH). Am. J. Trop. Med. Hyg. 2017, 96, 24–45. DOI: 10.4269/ajtmh.16-84256.
  • Kumar, A.; Pandey, S. C.; Samant, M. Slow Pace of Antileishmanial Drug Development. Parasitol 2018, 4, 1–11.
  • Jamshaid, H.; Din, F. U.; Khan, G. M. Nanotechnology Based Solutions for anti-Leishmanial Impediments: A Detailed Insight. J. Nanobiotechnol. 2021, 19, 106–157. DOI: 10.1186/s12951-021-00853-0.
  • Khan, A. U.; Jamshaid, H.; Din, F. U.; Zeb, A.; Khan, G. M. Designing, Optimization and Characterization of Trifluralin Transfersomal Gel to Passively Target Cutaneous Leishmaniasis. J. Pharm. Sci. 2022, 111, 1798–1811.
  • Khan, A. S.; Din, F. U.; Ali, Z.; Bibi, M.; Zahid, F.; Zeb, A.; Mujeeb Ur, R.; Khan, G. M. Development, In Vitro and In Vivo Evaluation of Miltefosine Loaded Nanostructured Lipid Carriers for the Treatment of Cutaneous Leishmaniasis. Int. J. Pharm. 2021, 593, 120109–120166. DOI: 10.1016/j.ijpharm.2020.120109.
  • Rabia, S.; Khaleeq, N.; Batool, S.; Dar, M. J.; Kim, D. W.; Din, F. U.; Khan, G. M. Rifampicin-Loaded Nanotransferosomal Gel for Treatment of Cutaneous Leishmaniasis: Passive Targeting via Topical Route. Nanomedicine (Lond) 2020, 15, 183–203. DOI: 10.2217/nnm-2019-0320.
  • Dar, M. J.; Din, F. U.; Khan, G. M. Sodium Stibogluconate Loaded Nano-Deformable Liposomes for Topical Treatment of Leishmaniasis: Macrophage as a Target Cell. Drug Deliv. 2018, 25, 1595–1606. DOI: 10.1080/10717544.2018.1494222.
  • Salim, M. W.; Shabbir, K.; Din, F. U.; Yousaf, A. M.; Choi, H. G.; Khan, G. M. Preparation, In-Vitro and In-Vivo Evaluation of Rifampicin and Vancomycin Co-Loaded Transfersomal Gel for the Treatment of Cutaneous Leishmaniasis. J. Drug. Deliv. Sci. Technol. 2020, 60, 101996–102008. DOI: 10.1016/j.jddst.2020.101996.
  • Khalid, H.; Batool, S.; Din, F. U.; Khan, S.; Khan, G. M. Macrophage Targeting of Nitazoxanide-Loaded Transethosomal Gel in Cutaneous Leishmaniasis. R. Soc. Open. Sci. 2022, 9, 220428.
  • Chan, M. M.; Tzeng, J.; Emge, T. J.; Ho, C. T.; Fong, D. Structure-Function Analysis of Antimicrotubule Dinitroanilines against Promastigotes of the Parasitic Protozoan Leishmania mexicana. Antimicrob. Agents Chemother. 1993, 37, 1909–1913. DOI: 10.1128/AAC.37.9.1909.
  • Lopes, R. M.; Pereira, J.; Esteves, M. A.; Gaspar, M. M.; Carvalheiro, M.; Eleutério, C. V.; Gonçalves, L.; Jiménez-Ruiz, A.; Almeida, A. J.; Cruz, M. E. Lipid-Based Nanoformulations of Trifluralin Analogs in the Management of Leishmania infantum Infections. Nanomedicine (Lond) 2016, 11, 153–170. DOI: 10.2217/nnm.15.190.
  • Esteves, M. A.; Fragiadaki, I.; Lopes, R.; Scoulica, E.; Cruz, M. E. Synthesis and Biological Evaluation of Trifluralin Analogues as Antileishmanial Agents. Bioorg. Med. Chem. 2010, 18, 274–281. DOI: 10.1016/j.bmc.2009.10.059.
  • Machado, P. R.; Ampuero, J.; Guimarães, L. H.; Villasboas, L.; Rocha, A. T.; Schriefer, A.; Sousa, R. S.; Talhari, A.; Penna, G.; Carvalho, E. M. Miltefosine in the Treatment of Cutaneous Leishmaniasis Caused by Leishmania braziliensis in Brazil: A Randomized and Controlled Trial. PLoS Negl. Trop. Dis. 2010, 4, e912–918. DOI: 10.1371/journal.pntd.0000912.
  • Mohebali, M.; Fotouhi, A.; Hooshmand, B.; Zarei, Z.; Akhoundi, B.; Rahnema, A.; Razaghian, A. R.; Kabir, M. J.; Nadim, A. Comparison of Miltefosine and Meglumine Antimoniate for the Treatment of Zoonotic Cutaneous Leishmaniasis (ZCL) by a Randomized Clinical Trial in Iran. Acta Trop. 2007, 103, 33–40. DOI: 10.1016/j.actatropica.2007.05.005.
  • WHO. Expert Committee on the Control of the Leishmaniases & World Health Organization. Control of the Leishmaniases; Report of a Meeting of the WHO Expert Commitee on the Control of Leishmaniases; WHO Press - World Health Organization: Geneva, Switzerland, 22–26. March 2010.
  • Van Bocxlaer, K.; Yardley, V.; Murdan, S.; Croft, S. L. Topical Formulations of Miltefosine for Cutaneous Leishmaniasis in a BALB/c Mouse Model. J. Pharm. Pharmacol. 2016, 68, 862–872. DOI: 10.1111/jphp.12548.
  • Dar, M. J.; McElroy, C. A.; Khan, M. I.; Satoskar, A. R.; Khan, G. M. Development and Evaluation of Novel Miltefosine-Polyphenol Co-Loaded Second Generation Nano-Transfersomes for the Topical Treatment of Cutaneous Leishmaniasis. Expert Opin. Drug. Deliv. 2020, 17, 97–110. DOI: 10.1080/17425247.2020.1700227.
  • Dorlo, T. P.; Balasegaram, M.; Beijnen, J. H.; de Vries, P. J. Miltefosine: A Review of Its Pharmacology and Therapeutic Efficacy in the Treatment of Leishmaniasis. J. Antimicrob. Chemother. 2012, 67, 2576–2597. DOI: 10.1093/jac/dks275.
  • Rajan, R.; Jose, S.; Mukund, V. P.; Vasudevan, D. T. Transferosomes - A Vesicular Transdermal Delivery System for Enhanced Drug Permeation. J. Adv. Pharm. Technol. Res. 2011, 2, 138–143. DOI: 10.4103/2231-4040.85524.
  • Kumar, A. Transferosome: A Recent Approach for Transdermal Drug Delivery. J. Drug Deliv. Ther. 2018, 8, 100–104. DOI: 10.22270/jddt.v8i5-s.1981.
  • Opatha, S. A. T.; Titapiwatanakun, V.; Chutoprapat, R. Transfersomes: A Promising Nanoencapsulation Technique for Transdermal Drug Delivery. Pharmaceutic 2020, 12, 855–878. DOI: 10.3390/pharmaceutics12090855.
  • Ahad, A.; Al-Saleh, A. A.; Al-Mohizea, A. M.; Al-Jenoobi, F. I.; Raish, M.; Yassin, A. E. B.; Alam, M. A. Formulation and Characterization of Phospholipon 90 G and Tween 80 Based Transfersomes for Transdermal Delivery of Eprosartan Mesylate. Pharm. Dev. Technol. 2018, 23, 787–793. DOI: 10.1080/10837450.2017.1330345.
  • Khan, M. W.; Zou, C.; Hassan, S.; Din, F. U.; Abdoul Razak, M. Y.; Nawaz, A.; Alam, Z.; Wahab, A.; Bangash, S. A. Cisplatin and Oleanolic Acid Co-Loaded pH-Sensitive CaCO3 Nanoparticles for Synergistic Chemotherapy. RSC Adv. 2022, 12, 14808–14818. DOI: 10.1039/d2ra00742h.
  • Bahramizadeh, M.; Bahramizadeh, M.; Kiafar, B.; Jafarian, A. H.; Nikpoor, A. R.; Hatamipour, M.; Esmaily, H.; Rezaeemehr, Z.; Golmohammadzadeh, S.; Moosavian, S. A.; Jafari, M. R. Development, Characterization and Evaluation of Topical Methotrexate-Entrapped Deformable Liposome on Imiquimod-Induced Psoriasis in a Mouse Model. Int. J. Pharm. 2019, 569, 118623–118636. DOI: 10.1016/j.ijpharm.2019.118623.
  • Din, F. U.; Zeb, A.; Shah, K. U.; Zia Ur, R. Development, In-Vitro and In-Vivo Evaluation of Ezetimibe-Loaded Solid Lipid Nanoparticles and Their Comparison with Marketed Product. J. Drug. Deliv. Sci. Technol. 2019b, 51, 583–590. DOI: 10.1016/j.jddst.2019.02.026.
  • Batool, S.; Zahid, F.; Din, F. U.; Naz, S. S.; Dar, M. J.; Khan, M. W.; Zeb, A.; Khan, G. M. Macrophage Targeting with the Novel Carbopol-Based Miltefosine-Loaded Transfersomal Gel for the Treatment of Cutaneous Leishmaniasis: In Vitro and In Vivo Analyses. Drug. Dev. Ind. Pharm. 2021, 47, 440–453. DOI: 10.1080/03639045.2021.1890768.
  • Zahid, F.; Batool, S.; Din, F. U.; Ali, Z.; Nabi, M.; Khan, S.; Salman, O.; Khan, G. M. Antileishmanial Agents Co-Loaded in Transfersomes with Enhanced Macrophage Uptake and Reduced Toxicity. A.A.P.S. PharmSciTech. 2022, 23, 226–244.
  • González-Rodríguez, M. L.; Arroyo, C. M.; Cózar-Bernal, M. J.; González, R. P.; León, J. M.; Calle, M.; Canca, D.; Rabasco, A. M. Deformability Properties of Timolol-Loaded Transfersomes Based on the Extrusion Mechanism. Statistical Optimization of the Process. Drug Dev. Ind. Pharm. 2016, 42, 1683–1694.
  • Bharadwaj, R.; Das, P. J.; Pal, P.; Mazumder, B. Topical Delivery of Paclitaxel for Treatment of Skin Cancer. Drug Dev. Ind. Pharm. 2016, 42, 1482–1494. DOI: 10.3109/03639045.2016.1151028.
  • Chaudhary, H.; Kohli, K.; Amin, S.; Rathee, P.; Kumar, V. Optimization and Formulation Design of Gels of Diclofenac and Curcumin for Transdermal Drug Delivery by Box-Behnken Statistical Design. J. Pharm. Sci. 2011, 100, 580–593. DOI: 10.1002/jps.22292.
  • Singh, S.; Verma, D.; Mirza, M. A.; Das, A. K.; Dudeja, M.; Anwer, M. K.; Sultana, Y.; Talegaonkar, S.; Iqbal, Z. Development and Optimization of Ketoconazole Loaded Nano-Transfersomal Gel for Vaginal Delivery Using Box-Behnken Design: In Vitro, Ex Vivo Characterization and Antimicrobial Evaluation. J. Drug. Deliv. Sci. Technol. 2017, 39, 95–103. DOI: 10.1016/j.jddst.2017.03.007.
  • Mushtaq, A.; Baseer, A.; Zaidi, S. S.; Waseem Khan, M.; Batool, S.; Elahi, E.; Aman, W.; Naeem, M.; Din, F. U. Fluconazole-Loaded Thermosensitive System: In Vitro Release, Pharmacokinetics and Safety Study. J. Drug. Deliv. Sci. Technol. 2022, 67, 102972–102981. DOI: 10.1016/j.jddst.2021.102972.
  • Ahad, A.; Aqil, M.; Kohli, K.; Sultana, Y.; Mujeeb, M. The Ameliorated Longevity and Pharmacokinetics of Valsartan Released from a Gel System of Ultradeformable Vesicles. Artif. Cells Nanomed. Biotechnol. 2016, 44, 1457–1463. DOI: 10.3109/21691401.2015.1041638.
  • Din, F. U.; Khan, G. M. Development and Characterisation of Levosulpiride-Loaded Suppositories with Improved Bioavailability In Vivo. Pharm. Dev. Technol. 2019a, 24, 63–69. DOI: 10.1080/10837450.2017.1419256.
  • Abd El-Alim, S. H.; Kassem, A. A.; Basha, M.; Salama, A. Comparative Study of Liposomes, Ethosomes and Transfersomes as Carriers for Enhancing the Transdermal Delivery of Diflunisal: In Vitro and In Vivo Evaluation. Int. J. Pharm. 2019, 563, 293–303. DOI: 10.1016/j.ijpharm.2019.04.001.
  • Jamshaid, H.; Din, F. U.; Malik, M.; Mukhtiar, M.; Choi, H. G.; Rehman, T. U.; Khan, G. M. A Cutback in Imiquimod Cutaneous Toxicity; Comparative Cutaneous Toxicity Analysis of Imiquimod Nanotransethosomal Gel with 5% Marketed Cream on the BALB/c Mice. Sci. Rep. 2022, 12, 14244–14265. DOI: 10.1038/s41598-022-18671-1.
  • Jaafar-Maalej, C.; Diab, R.; Andrieu, V.; Elaissari, A.; Fessi, H. Ethanol Injection Method for Hydrophilic and Lipophilic Drug-Loaded Liposome Preparation. J. Liposome Res. 2010, 20, 228–243. DOI: 10.3109/08982100903347923.
  • Chaubey, P.; Mishra, B. Mannose-Conjugated Chitosan Nanoparticles Loaded with Rifampicin for the Treatment of Visceral Leishmaniasis. Carbohydr. Polym. 2014, 101, 1101–1108. DOI: 10.1016/j.carbpol.2013.10.044.
  • Malakar, J.; Sen, S. O.; Nayak, A. K.; Sen, K. K. Formulation, Optimization and Evaluation of Transferosomal Gel for Transdermal Insulin Delivery. Saudi Pharm. J. 2012, 20, 355–363. DOI: 10.1016/j.jsps.2012.02.001.
  • Rezk, A. I.; Obiweluozor, F. O.; Choukrani, G.; Park, C. H.; Kim, C. S. Drug Release and Kinetic Models of Anticancer Drug (BTZ) from a pH-Responsive Alginate Polydopamine Hydrogel: Towards Cancer Chemotherapy. Int. J. Biol. Macromol. 2019, 141, 388–400. DOI: 10.1016/j.ijbiomac.2019.09.013.
  • Bohrey, S.; Chourasiya, V.; Pandey, A. Polymeric Nanoparticles Containing Diazepam: Preparation, Optimization, Characterization, In-Vitro Drug Release and Release Kinetic Study. Nano Converg. 2016, 3, 3–10. DOI: 10.1186/s40580-016-0061-2.
  • Salama, A.; Badran, M.; Elmowafy, M.; Soliman, G. M. Spironolactone-Loaded LeciPlexes as Potential Topical Delivery Systems for Female Acne: In Vitro Appraisal and Ex Vivo Skin Permeability Studies. Pharmaceutics 2019, 12, 25–42. DOI: 10.3390/pharmaceutics12010025.
  • Aziz, D. E.; Abdelbary, A. A.; Elassasy, A. I. Investigating Superiority of Novel Bilosomes over Niosomes in the Transdermal Delivery of Diacerein: In Vitro Characterization, Ex Vivo Permeation and In Vivo Skin Deposition Study. J. Liposome Res. 2019, 29, 73–85. DOI: 10.1080/08982104.2018.1430831.
  • Mir-Palomo, S.; Nácher, A.; Díez-Sales, O.; Ofelia Vila Busó, M. A.; Caddeo, C.; Manca, M. L.; Manconi, M.; Fadda, A. M.; Saurí, A. R. Inhibition of Skin Inflammation by Baicalin Ultradeformable Vesicles. Int. J. Pharm. 2016, 511, 23–29. DOI: 10.1016/j.ijpharm.2016.06.136.
  • Al-Mahallawi, A. M.; Fares, A. R.; Abd-Elsalam, W. H. Enhanced Permeation of Methotrexate via Loading into Ultra-Permeable Niosomal Vesicles: Fabrication, Statistical Optimization, Ex Vivo Studies, and In Vivo Skin Deposition and Tolerability. A.A.P.S. PharmSciTech. 2019, 20, 171–181.
  • Arora, D.; Nanda, S. Quality by Design Driven Development of Resveratrol Loaded Ethosomal Hydrogel for Improved Dermatological Benefits via Enhanced Skin Permeation and Retention. Int. J. Pharm. 2019, 567, 118448–118461. DOI: 10.1016/j.ijpharm.2019.118448.
  • Draize, J. H.; Woodard, G.; Calvery, H. O. Methods for the Study of Irritation and Toxicity of Substances Applied Topically to the Skin and Mucous Membranes. J. Pharmacol. Exp. Ther. 1944, 82, 377–390.
  • Bibi, M.; Din, F. U.; Anwar, Y.; Alkenani, N. A.; Zari, A. T.; Mukhtiar, M.; Abu Zeid, I. M.; Althubaiti, E. H.; Nazish, H.; Zeb, A.; et al. Cilostazol-Loaded Solid Lipid Nanoparticles: Bioavailability and Safety Evaluation in an Animal Model. J. Drug. Deliv. Sci. Technol. 2022, 74, 103581–103593. DOI: 10.1016/j.jddst.2022.103581.
  • Cao, M.; Ren, L.; Chen, G. Formulation Optimization and Ex Vivo and In Vivo Evaluation of Celecoxib Microemulsion-Based Gel for Transdermal Delivery. A.A.P.S. PharmSciTech. 2017, 18, 1960–1971. DOI: 10.1208/s12249-016-0667-z.
  • Ahad, A.; Al-Saleh, A. A.; Al-Mohizea, A. M.; Al-Jenoobi, F. I.; Raish, M.; Yassin, A. E. B.; Alam, M. A. Pharmacodynamic Study of Eprosartan Mesylate-Loaded Transfersomes Carbopol(®) Gel under Dermaroller(®) on Rats with Methyl Prednisolone Acetate-Induced Hypertension. Biomed. Pharmacother. 2017, 89, 177–184. DOI: 10.1016/j.biopha.2017.01.164.
  • Khatoon, K.; Rizwanullah, M.; Amin, S.; Mir, S. R.; Akhter, S. Cilnidipine Loaded Transfersomes for Transdermal Application: Formulation Optimization, In-Vitro and In-Vivo Study. J. Drug. Deliv. Sci. Technol. 2019, 54, 101303–101314. DOI: 10.1016/j.jddst.2019.101303.
  • Fang, J. Y.; Hung, C. F.; Chiu, H. C.; Wang, J. J.; Chan, T. F. Efficacy and Irritancy of Enhancers on the In-Vitro and In-Vivo Percutaneous Absorption of Curcumin. J. Pharm. Pharmacol. 2003, 55, 593–601. DOI: 10.1211/002235703765344496.
  • Salama, A. H.; Aburahma, M. H. Ufasomes Nano-Vesicles-Based Lyophilized Platforms for Intranasal Delivery of Cinnarizine: Preparation, Optimization, Ex-Vivo Histopathological Safety Assessment and Mucosal Confocal Imaging. Pharm. Dev. Technol. 2016, 21, 706–715. DOI: 10.3109/10837450.2015.1048553.
  • Shahnaz, G.; Edagwa, B. J.; McMillan, J.; Akhtar, S.; Raza, A.; Qureshi, N. A.; Yasinzai, M.; Gendelman, H. E. Development of Mannose-Anchored Thiolated Amphotericin B Nanocarriers for Treatment of Visceral Leishmaniasis. Nanomedicine (Lond) 2017, 12, 99–115. DOI: 10.2217/nnm-2016-0325.
  • Godin, B.; Touitou, E. Erythromycin Ethosomal Systems: Physicochemical Characterization and Enhanced Antibacterial Activity. Curr. Drug Deliv. 2005, 2, 269–275. DOI: 10.2174/1567201054367931.
  • Moolakkadath, T.; Aqil, M.; Ahad, A.; Imam, S. S.; Iqbal, B.; Sultana, Y.; Mujeeb, M.; Iqbal, Z. Development of Transethosomes Formulation for Dermal Fisetin Delivery: Box-Behnken Design, Optimization, In Vitro Skin Penetration, Vesicles-Skin Interaction and Dermatokinetic Studies. Artif. Cells Nanomed. Biotechnol. 2018, 46, 755–765. DOI: 10.1080/21691401.2018.1469025.
  • Din, F. U.; Mustapha, O.; Kim, D. W.; Rashid, R.; Park, J. H.; Choi, J. Y.; Ku, S. K.; Yong, C. S.; Kim, J. O.; Choi, H. G. Novel Dual-Reverse Thermosensitive Solid Lipid Nanoparticle-Loaded Hydrogel for Rectal Administration of Flurbiprofen with Improved Bioavailability and Reduced Initial Burst Effect. Eur. J. Pharm. Biopharm. 2015b, 94, 64–72. DOI: 10.1016/j.ejpb.2015.04.019.
  • Din, F. U.; Jin, S. G.; Choi, H. G. Particle and Gel Characterization of Irinotecan-Loaded Double-Reverse Thermosensitive Hydrogel. Polymers. (Basel) 2021, 13, 551–562. DOI: 10.3390/polym13040551.
  • Rizvi, S. Z. H.; Shah, F. A.; Khan, N.; Muhammad, I.; Ali, K. H.; Ansari, M. M.; Din, F. U.; Qureshi, O. S.; Kim, K. W.; Choe, Y. H.; et al. Simvastatin-Loaded Solid Lipid Nanoparticles for Enhanced anti-Hyperlipidemic Activity in Hyperlipidemia Animal Model. Int. J. Pharm. 2019, 560, 136–143. DOI: 10.1016/j.ijpharm.2019.02.002.
  • Khaleeq, N.; Din, F. U.; Khan, A. S.; Rabia, S.; Dar, J.; Khan, G. M. Development of Levosulpiride-Loaded Solid Lipid Nanoparticles and Their In Vitro and In Vivo Comparison with Commercial Product. J. Microencapsul. 2020, 37, 160–169. DOI: 10.1080/02652048.2020.1713242.
  • Sabir, F.; Asad, M. I.; Qindeel, M.; Afzal, I.; Dar, M. J.; Shah, K. U.; Zeb, A.; Khan, G. M.; Ahmed, N.; Din, F. U. Polymeric Nanogels as Versatile Nanoplatforms for Biomedical Applications. J. Nanomater. 2019, 2019, 1–16. DOI: 10.1155/2019/1526186.
  • Berger, J.; Reist, M.; Mayer, J. M.; Felt, O.; Peppas, N. A.; Gurny, R. Structure and Interactions in Covalently and Ionically Crosslinked Chitosan Hydrogels for Biomedical Applications. Eur. J. Pharm. Biopharm. 2004, 57, 19–34. DOI: 10.1016/S0939-6411(03)00161-9.
  • Din, F. U.; Rashid, R.; Mustapha, O.; Kim, D. W.; Park, J. H.; Ku, S. K.; Oh, Y. K.; Kim, J. O.; Youn, Y. S.; Yong, C. S.; et al. Development of a Novel Solid Lipid Nanoparticles-Loaded Dual-Reverse Thermosensitive Nanomicelle for Intramuscular Administration with Sustained Release and Reduced Toxicity. RSC Adv. 2015a, 5, 43687–43694. DOI: 10.1039/C5RA05656J.
  • Din, F. U.; Choi, J. Y.; Kim, D. W.; Mustapha, O.; Kim, D. S.; Thapa, R. K.; Ku, S. K.; Youn, Y. S.; Oh, K. T.; Yong, C. S.; et al. Irinotecan-Encapsulated Double-Reverse Thermosensitive Nanocarrier System for Rectal Administration. Drug Deliv. 2017b, 24, 502–510. DOI: 10.1080/10717544.2016.1272651.
  • Din, F. U.; Kim, D. W.; Choi, J. Y.; Thapa, R. K.; Mustapha, O.; Kim, D. S.; Oh, Y. K.; Ku, S. K.; Youn, Y. S.; Oh, K. T.; et al. Irinotecan-Loaded Double-Reversible Thermogel with Improved Antitumor Efficacy without Initial Burst Effect and Toxicity for Intramuscular Administration. Acta Biomater. 2017a, 54, 239–248. DOI: 10.1016/j.actbio.2017.03.007.
  • Lambers, H.; Piessens, S.; Bloem, A.; Pronk, H.; Finkel, P. Natural Skin Surface pH is on Average below 5, Which is Beneficial for Its Resident Flora. Int. J. Cosmet. Sci. 2006, 28, 359–370. DOI: 10.1111/j.1467-2494.2006.00344.x.
  • Al-Suwayeh, S. A.; Taha, E. I.; Al-Qahtani, F. M.; Ahmed, M. O.; Badran, M. M. Evaluation of Skin Permeation and Analgesic Activity Effects of Carbopol Lornoxicam Topical Gels Containing Penetration Enhancer. Sci. World J. 2014, 2014, 127495–127504. DOI: 10.1155/2014/127495.
  • Aiyalu, R.; Govindarjan, A.; Ramasamy, A. Formulation and Evaluation of Topical Herbal Gel for the Treatment of Arthritis in Animal Model. Braz. J. Pharm. Sci. 2016, 52, 493–507. DOI: 10.1590/s1984-82502016000300015.
  • Kaur, L.; Jain, S. K.; Singh, K. Vitamin E TPGS Based Nanogel for the Skin Targeting of High Molecular Weight anti-Fungal Drug: Development and In Vitro and In Vivo Assessment. RSC Adv. 2015, 5, 53671–53686. DOI: 10.1039/C5RA08374E.
  • Sohrabi, S.; Haeri, A.; Mahboubi, A.; Mortazavi, A.; Dadashzadeh, S. Chitosan Gel-Embedded Moxifloxacin Niosomes: An Efficient Antimicrobial Hybrid System for Burn Infection. Int. J. Biol. Macromol. 2016, 85, 625–633. DOI: 10.1016/j.ijbiomac.2016.01.013.
  • Rezk, A. I.; Rajan Unnithan, A.; Hee Park, C.; Sang Kim, C. Rational Design of Bone Extracellular Matrix Mimicking Tri-Layered Composite Nanofibers for Bone Tissue Regeneration. J. Chem. Eng. 2018, 350, 812–823. DOI: 10.1016/j.cej.2018.05.185.
  • Shaji, J.; Lal, M. Novel Double Loaded Transferosomes: Evidence of Support anti-Inflammatory Efficacy- A Comparative Study. Int. J. Curr. Pharm. 2014, 6, 16–25.
  • Mohammadpour, G.; Marzony, E. T.; Farahmand, M. Evaluation of the anti-Leishmania Major Activity of Satureja Bakhtiarica Essential Oil In Vitro. Nat. Prod. Commun. 2012, 7, 133–136.
  • Tempone, A. G.; Perez, D.; Rath, S.; Vilarinho, A. L.; Mortara, R. A.; de Andrade, H. F. Jr, Targeting Leishmania (L.) chagasi Amastigotes through Macrophage Scavenger Receptors: The Use of Drugs Entrapped in Liposomes Containing Phosphatidylserine. J. Antimicrob. Chemother. 2004, 54, 60–68. DOI: 10.1093/jac/dkh281.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.