64
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

A hybrid of NiCo-PBNCs nano-composite supported two-dimensional molybdenum disulfide as excellent peroxidase mimics for colorimetric glucose detection

&
Pages 368-379 | Received 13 Jul 2022, Accepted 23 Oct 2022, Published online: 29 Dec 2022

References

  • Mergenthaler, P.; Lindauer, U.; Dienel, G. A.; Meisel, A. Sugar for the Brain: The Role of Glucose in Physiological and Pathological Brain Function. Trends Neurosci. 2013, 36, 587–597. DOI: 10.1016/j.tins.2013.07.001.
  • Oliva, R. V.; Bakris, G. L. Blood Pressure Effects of Sodium–Glucose Co-Transport 2 (SGLT2) Inhibitors. J. Am. Soc. Hypertens 2014, 8, 330–339. DOI: 10.1016/j.jash.2014.02.003.
  • Singh, S.; Mitra, K.; Singh, R.; Kumari, A.; Sen Gupta, S. K.; Misra, N.; Maiti, P.; Ray, B. Colorimetric Detection of Hydrogen Peroxide and Glucose Using Brominated Graphene. Anal. Methods 2017, 9, 6675–6681. DOI: 10.1039/C7AY02212C.
  • Krishnan, S. K.; Singh, E.; Singh, P.; Meyyappan, M.; Nalwa, H. S. A Review on Graphene-Based Nanocomposites for Electrochemical and Fluorescent Biosensors. RSC Adv. 2019, 9, 8778–8881. DOI: 10.1039/C8RA09577A.
  • Teymourian, H.; Barfidokht, A.; Wang, J. Electrochemical Glucose Sensors in Diabetes Management: An Updated Review (2010–2020). Chem. Soc. Rev. 2020, 49, 7671–7709. DOI: 10.1039/D0CS00304B.
  • Despres, J.-P. Treatment of Obesity: Need to Focus on High Risk Abdominally Obese Patients. BMJ 2001, 322, 716–720. DOI: 10.1136/bmj.322.7288.716.
  • Ergun-Longmire, B.; Clemente, E.; Vining-Maravolo, P.; Roberts, C.; Buth, K.; Greydanus, D. E. Diabetes Education in Pediatrics: How to Survive Diabetes. Dis. Mon. 2021, 67, 101153. DOI: 10.1016/j.disamonth.2021.101153.
  • Shrivastava, S. R.; Shrivastava, P. S.; Ramasamy, J. Role of Self-Care in Management of Diabetes Mellitus. J. Diabetes Metab. Disord. 2013, 12, 14. DOI: 10.1186/2251-6581-12-14.
  • Mahaseth, T.; Kuzminov, A. Potentiation of Hydrogen Peroxide Toxicity: From Catalase Inhibition to Stable DNA-Iron Complexes. Mutat. Res. Rev. Mutat. Res. 2017, 773, 274–281. DOI: 10.1016/j.mrrev.2016.08.006.
  • Palanisamy, S.; Chen, S.-M.; Sarawathi, R. A Novel Nonenzymatic Hydrogen Peroxide Sensor Based on Reduced Graphene Oxide/ZnO Composite Modified Electrode. Sens. Actuators, B 2012, 166-167, 372–377. DOI: 10.1016/j.snb.2012.02.075.
  • Bommer, U.-A.; Telerman, A. Dysregulation of TCTP in Biological Processes and Diseases. Cells 2020, 9, 1632. DOI: 10.3390/cells9071632.
  • Veal, E. A.; Day, A. M.; Morgan, B. A. Hydrogen Peroxide Sensing and Signaling. Mol. Cell 2007, 26, 1–14. DOI: 10.1016/j.molcel.2007.03.016.
  • Lakshmi, D.; Whitcombe, M. J.; Davis, F.; Sharma, P. S.; Prasad, B. B. Electrochemical Detection of Uric Acid in Mixed and Clinical Samples: A Review. Electroanalysis 2011, 23, 305–320. DOI: 10.1002/elan.201000525.
  • Zhou, Z.; Li, Y.; Su, W.; Gu, B.; Xu, H.; Wu, C.; Yin, P.; Li, H.; Zhang, Y. A Dual-Signal Colorimetric and near-Infrared Fluorescence Probe for the Detection of Exogenous and Endogenous Hydrogen Peroxide in Living Cells. Sens. Actuators, B 2019, 280, 120–128. DOI: 10.1016/j.snb.2018.09.126.
  • Dhara, K.; Mahapatra, D. R. Recent Advances in Electrochemical Nonenzymatic Hydrogen Peroxide Sensors Based on Nanomaterials: A Review. J. Mater. Sci. 2019, 54, 12319–12357. DOI: 10.1007/s10853-019-03750-y.
  • Tiwari, J. N.; Vij, V.; Kemp, K. C.; Kim, K. S. Engineered Carbon-Nanomaterial-Based Electrochemical Sensors for Biomolecules. ACS Nano 2016, 10, 46–80. DOI: 10.1021/acsnano.5b05690.
  • Wagner, M.; Tonoli, D.; Varesio, E.; Hopfgartner, G. The Use of Mass Spectrometry to Analyze Dried Blood Spots. Mass Spectrom. Rev. 2016, 35, 361–438. DOI: 10.1002/mas.21441.
  • Basiri, S.; Mehdinia, A.; Jabbari, A.; Sensitive Triple Colorimetric Sensor, A. Based on Plasmonic Response Quenching of Green Synthesized Silver Nanoparticles for Determination of Fe 2+, Hydrogen Peroxide, and Glucose. Colloids Surf., A 2018, 545, 138–146. DOI: 10.1016/j.colsurfa.2018.02.053.
  • Sharma, L.; Gouraj, S.; Raut, P.; Tagad, C. Development of a Surface-Modified Paper-Based Colorimetric Sensor Using Synthesized Ag NPs-Alginate Composite. Environ. Technol. 2021, 42, 3441–3450. DOI: 10.1080/09593330.2020.1732471.
  • Wuttke, S.; Lismont, M.; Escudero, A.; Rungtaweevoranit, B.; Parak, W. J. Positioning Metal-Organic Framework Nanoparticles within the Context of Drug Delivery – A Comparison with Mesoporous Silica Nanoparticles and Dendrimers. Biomaterials 2017, 123, 172–183. DOI: 10.1016/j.biomaterials.2017.01.025.
  • Yang, J.; Yang, Y. Metal–Organic Frameworks for Biomedical Applications. Small 2020, 16, 1906846. DOI: 10.1002/smll.201906846.
  • Georgakilas, V.; Tiwari, J. N.; Kemp, K. C.; Perman, J. A.; Bourlinos, A. B.; Kim, K. S.; Zboril, R. Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications. Chem. Rev. 2016, 116, 5464–5519. DOI: 10.1021/acs.chemrev.5b00620.
  • Jia, H.; Yang, D.; Han, X.; Cai, J.; Liu, H.; He, W. Peroxidase-like Activity of the Co 3 O 4 Nanoparticles Used for Biodetection and Evaluation of Antioxidant Behavior. Nanoscale 2016, 8, 5938–5945. DOI: 10.1039/C6NR00860G.
  • Shirvani, S.; Ghashghaee, M.; Smith, K. J. Two-Dimensional Nanomaterials in Thermocatalytic Reactions: Transition Metal Dichalcogenides, Metal Phosphorus Trichalcogenides and MXenes. Catalysis Rev. 2021, 1–51. DOI: 10.1080/01614940.2021.1899605.
  • Zhang, W.; Niu, X.; Li, X.; He, Y.; Song, H.; Peng, Y.; Pan, J.; Qiu, F.; Zhao, H.; Lan, M. A Smartphone-Integrated Ready-to-Use Paper-Based Sensor with Mesoporous Carbon-Dispersed Pd Nanoparticles as a Highly Active Peroxidase Mimic for H2O2 Detection. Sens. Actuators, B 2018, 265, 412–420. DOI: 10.1016/j.snb.2018.03.082.
  • Liu, J.; Wang, J.; Li, Z.; Meng, H.; Zhang, L.; Wang, H.; Li, J.; Qu, L. A Lateral Flow Assay for the Determination of Human Tetanus Antibody in Whole Blood by Using Gold Nanoparticle Labeled Tetanus Antigen. Mikrochim Acta 2018, 185, 110. DOI: 10.1007/s00604-017-2657-6.
  • Kumar, S.; Bhushan, P.; Bhattacharya, S. Development of a Paper-Based Analytical Device for Colorimetric Detection of Uric Acid Using Gold Nanoparticles–Graphene Oxide (AuNPs–GO) Conjugates. Anal. Methods 2016, 8, 6965–6973. DOI: 10.1039/C6AY01926A.
  • Huang, S.; Chen, C.; Tsai, H.; Shaya, J.; Lu, C. Photocatalytic Degradation of Thiobencarb by a Visible Light-Driven MoS2 Photocatalyst. Sep. Purif. Technol. 2018, 197, 147–155. DOI: 10.1016/j.seppur.2018.01.009.
  • Chang, K.; Mei, Z.; Wang, T.; Kang, Q.; Ouyang, S.; Ye, J. MoS2/Graphene Cocatalyst for Efficient Photocatalytic H2 Evolution under Visible Light Irradiation. ACS Nano 2014, 8, 7078–7087. DOI: 10.1021/nn5019945.
  • Battistuzzi, G.; Bellei, M.; Casella, L.; Bortolotti, C. A.; Roncone, R.; Monzani, E.; Sola, M. Redox Reactivity of the Heme Fe3+/Fe2+ Couple in Native Myoglobins and Mutants with Peroxidase-like Activity. J. Biol. Inorg. Chem. 2007, 12, 951–958. DOI: 10.1007/s00775-007-0267-1.
  • Toshima, N.; Yonezawa, T. Bimetallic Nanoparticles—Novel Materials for Chemical and Physical Applications. New J. Chem 1998, 22, 1179–1201. DOI: 10.1039/a805753b.
  • Darabdhara, G.; Bordoloi, J.; Manna, P.; Das, M. R. Biocompatible Bimetallic Au-Ni Doped Graphitic Carbon Nitride Sheets: A Novel Peroxidase-Mimicking Artificial Enzyme for Rapid and Highly Sensitive Colorimetric Detection of Glucose. Sens. Actuators, B 2019, 285, 277–290. DOI: 10.1016/j.snb.2019.01.048.
  • He, B.; Kuang, P.; Li, X.; Chen, H.; Yu, J.; Fan, K. In Situ Transformation of Prussian‐Blue Analogue‐Derived Bimetallic Carbide Nanocubes by Water Oxidation: Applications for Energy Storage and Conversion. Chemistry 2020, 26, 4052–4062. DOI: 10.1002/chem.201902659.
  • Zhong, Y.; Shi, T.; Huang, Y.; Cheng, S.; Chen, C.; Liao, G.; Tang, Z. Three-Dimensional MoS2/Graphene Aerogel as Binder-Free Electrode for Li-Ion Battery. Nanoscale Res. Lett. 2019, 14, 85. DOI: 10.1186/s11671-019-2916-z.
  • Yu, X.-Y.; Feng, Y.; Jeon, Y.; Guan, B.; Lou, X. W. D.; Paik, U. Formation of Ni-Co-MoS2 Nanoboxes with Enhanced Electrocatalytic Activity for Hydrogen Evolution. Adv. Mater. 2016, 28, 9006–9011. DOI: 10.1002/adma.201601188.
  • Gong, L.; Chen, Y.; Bai, X.; Xu, T.; Wu, S.; Song, W.; Feng, X. Peroxidase-Mimicking Pt Nanodots Supported on Polymerized Ionic Liquid Wrapped Multi-Walled Carbon Nanotubes for Colorimetric Detection of Hydrogen Peroxide and Glucose. Microchem. J. 2021, 163, 105872. DOI: 10.1016/j.microc.2020.105872.
  • Zeng, Y.; Li, Y.; Tan, X.; Gong, J.; Wang, Z.; An, Y.; Wang, Z.; Li, H. B,N-Doped PdRu Aerogels as High-Performance Peroxidase Mimics for Sensitive Detection of Glucose. ACS Appl. Mater. Interfaces 2021, 13, 36816–36823. DOI: 10.1021/acsami.1c07987.
  • Yu, J.; Ma, D.; Mei, L.; Gao, Q.; Yin, W.; Zhang, X.; Yan, L.; Gu, Z.; Ma, X.; Zhao, Y. Peroxidase-like Activity of MoS2 Nanoflakes with Different Modifications and Their Application for H2O2 and Glucose Detection. J. Mater. Chem. B 2018, 6, 487–498. DOI: 10.1039/C7TB02676E.
  • Lu, J.; Zhang, H.; Li, S.; Guo, S.; Shen, L.; Zhou, T.; Zhong, H.; Wu, L.; Meng, Q.; Zhang, Y. Oxygen-Vacancy-Enhanced Peroxidase-like Activity of Reduced Co3O4 Nanocomposites for the Colorimetric Detection of H2O2 and Glucose. Inorg. Chem. 2020, 59, 3152–3159. DOI: 10.1021/acs.inorgchem.9b03512.
  • Yang, F.; Jiang, G.; Yan, F.; Chang, Q. Fe/C Magnetic Nanocubes with Enhanced Peroxidase Mimetic Activity for Colorimetric Determination of Hydrogen Peroxide and Glucose. Mikrochim Acta 2019, 186, 417. DOI: 10.1007/s00604-019-3527-1.
  • Wang, Y.; Zhou, B.; Wu, S.; Wang, K.; He, X. Colorimetric Detection of Hydrogen Peroxide and Glucose Using the Magnetic Mesoporous Silica Nanoparticles. Talanta 2015, 134, 712–717. DOI: 10.1016/j.talanta.2014.12.013.
  • Nirala, N. R.; Prakash, R. One Step Synthesis of AuNPs@MoS2-QDs Composite as a Robust Peroxidase- Mimetic for Instant Unaided Eye Detection of Glucose in Serum, Saliva and Tear. Sens. Actuators, B 2018, 263, 109–119. DOI: 10.1016/j.snb.2018.02.085.
  • Selvarajan, S.; Alluri, N. R.; Chandrasekhar, A.; Kim, S.-J. Direct Detection of Cysteine Using Functionalized BaTiO3 Nanoparticles Film Based Self-Powered Biosensor. Biosens. Bioelectron 2017, 91, 203–210. DOI: 10.1016/j.bios.2016.12.006.
  • Tummalapalli, M.; Singh, S.; Sanwaria, S.; Gurave, P. M. Design and Development of Advanced Glucose Biosensors via Tuned Interactions between Marine Polysaccharides and Diagnostic Elements – A Survey. Sens. Int. 2022, 3, 100170. DOI: 10.1016/j.sintl.2022.100170.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.