103
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Tribological and rheological properties of calcium grease with hybrid nano additives

, &
Pages 559-568 | Received 02 Sep 2022, Accepted 25 Dec 2022, Published online: 12 Jan 2023

References

  • Kamel, B. M.; El-Kashif, E.; Hoziefa, W.; Shiba, M. S.; Elshalakany, A. B. The Effect of MWCNTs/GNs Hybrid Addition on the Tribological and Rheological Properties of Lubricating Engine Oil. J. Dispersion Sci. Technol. 2021, 42, 1811–1819. DOI: 10.1080/01932691.2020.1789470.
  • Kamel, B. M.; Tirth, V.; Algahtani, A.; Shiba, M. S.; Mobasher, A.; Hashish, H. A.; Dabees, S. Optimization of the Rheological Properties and Tribological Performance of SAE 5w-30 Base Oil with Added MWCNTs. Lubricants 2021, 9, 94. DOI: 10.3390/lubricants9090094.
  • Gad, M.; Kamel, B. M.; Badruddin, I. A. Improving the Diesel Engine Performance, Emissions and Combustion Characteristics Using Biodiesel with Carbon Nanomaterials. Fuel 2021, 288, 119665. DOI: 10.1016/j.fuel.2020.119665.
  • Dabees, S.; Osman, T.; Kamel, B. M. Mechanical, Thermal, and Flammability Properties of Polyamide-6 Reinforced with a Combination of Carbon Nanotubes and Titanium Dioxide for under-the-Hood Applications. J. Thermoplast. Compos. Mater. 2022, 0(0), 1–31.. DOI: 10.1177/08927057211067698.
  • Dabees, S.; Elshalakany, A. B.; Tirth, V.; Kamel, B. M. Synthesis and Characterization Studies of High-Density Polyethylene-Based Nanocomposites with Enhanced Surface Energy, Tribological, and Electrical Properties. Polym. Test. 2021, 98, 107193. DOI: 10.1016/j.polymertesting.2021.107193.
  • Mujtaba, M. A.; Muk Cho, H.; Masjuki, H. H.; Kalam, M. A.; Farooq, M.; Soudagar, M. E. M.; Gul, M.; Ahmed, W.; Afzal, A.; Bashir, S.; et al. Effect of Alcoholic and Nano-Particles Additives on Tribological Properties of Diesel–Palm–Sesame–Biodiesel Blends. Energy Rep. 2021, 7, 1162–1171. DOI: 10.1016/j.egyr.2020.12.009.
  • Yazid, M. N. A. W. M.; Sidik, N. A. C.; Yahya, W. J. Heat and Mass Transfer Characteristics of Carbon Nanotube Nanofluids: A Review. Renew. Sustain. Energy Rev. 2017, 80, 914–941. DOI: 10.1016/j.rser.2017.05.192.
  • Kamel, B. M.; Arafa, E. l.; Mohamed, A. Tribological and Rheological Properties of the Lubricant Containing Hybrid Graphene Nanosheets (GNs)/Titanium Dioxide (TiO2) Nanoparticles as an Additive on Calcium Grease. J. Dispers. Sci. Technol. 2022, 1–8. DOI: 10.1080/01932691.2022.2122491.
  • Soudagar, M. E. M.; Nik-Ghazali, N.-N.; Kalam, M.; Badruddin, I. A.; Banapurmath, N.; Khan, T. Y.; Bashir, M. N.; Akram, N.; Farade, R.; Afzal, A. The Effects of Graphene Oxide Nanoparticle Additive Stably Dispersed in Dairy Scum Oil Biodiesel-Diesel Fuel Blend on CI Engine: performance, Emission and Combustion Characteristics. Fuel 2019, 257, 116015. DOI: 10.1016/j.fuel.2019.116015.
  • Kamel, B. M.; Mohamed, A.; El-Sherbiny, M.; Abed, K.; Abd-Rabou, M. Rheological Characteristics of Modified Calcium Grease with Graphene Nanosheets. Fuller. Nanot.Carbon Nanostruct. 2017, 25, 429–434. DOI: 10.1080/1536383X.2017.1330265.
  • Phuoc, T. X.; Massoudi, M.; Chen, R.-H. Viscosity and Thermal Conductivity of Nanofluids Containing Multi-Walled Carbon Nanotubes Stabilized by Chitosan. Int. J. Therm. Sci. 2011, 50, 12–18. DOI: 10.1016/j.ijthermalsci.2010.09.008.
  • Okumuş, M.; Bülbül, B. Study of Microstructural, Mechanical, Thermal and Tribological Properties of Graphene Oxide Reinforced Al–10Ni Metal Matrix Composites Prepared by Mechanical Alloying Method. Wear 2022, 510-511, 204511. DOI: 10.1016/j.wear.2022.204511.
  • Mohamed, A.; Osman, T.; Khattab, A.; Zaki, M. Tribological Behavior of Carbon Nanotubes as an Additive on Lithium Grease. J. Tribol. 2015, 137, 011801. DOI: 10.1115/1.4028225.
  • Ge, X.; Xia, Y.; Cao, Z. Tribological Properties and Insulation Effect of Nanometer TiO2 and Nanometer SiO2 as Additives in Grease. Tribol. Int. 2015, 92, 454–461. DOI: 10.1016/j.triboint.2015.07.031.
  • Ettefaghi, E-o-l.; Rashidi, A.; Ahmadi, H.; Mohtasebi, S. S.; Pourkhalil, M. Thermal and Rheological Properties of Oil-Based Nanofluids from Different Carbon Nanostructures. Int. Commun. Heat Mass Transf. 2013, 48, 178–182. DOI: 10.1016/j.icheatmasstransfer.2013.08.004.
  • Cheng, Z.-L.; Qin, X.-X. Study on Friction Performance of Graphene-Based Semi-Solid Grease. Chin. Chem. Lett. 2014, 25, 1305–1307. DOI: 10.1016/j.cclet.2014.03.010.
  • Kamel, B. M.; Mohamed, A.; El Sherbiny, M.; Abed, K. Rheology and Thermal Conductivity of Calcium Grease Containing Multi-Walled Carbon Nanotube. Fuller. Nanot. Carbon Nanostruct. 2016, 24, 260–265. DOI: 10.1080/1536383X.2016.1143462.
  • Chen, L.; Xie, H.; Yu, W.; Li, Y. Rheological Behaviors of Nanofluids Containing Multi-Walled Carbon Nanotube. J. Dispers. Sci. Technol. 2011, 32, 550–554. DOI: 10.1080/01932691003757223.
  • Lin, J.; Wang, L.; Chen, G. Modification of Graphene Platelets and Their Tribological Properties as a Lubricant Additive. Tribol. Lett. 2011, 41, 209–215. DOI: 10.1007/s11249-010-9702-5.
  • Moghadam, A. D.; Omrani, E.; Menezes, P. L.; Rohatgi, P. K. Mechanical and Tribological Properties of Self-Lubricating Metal Matrix Nanocomposites Reinforced by Carbon Nanotubes (CNTs) and Graphene–a Review. Compos. Part B: Eng. 2015, 77, 402–420. DOI: 10.1016/j.compositesb.2015.03.014.
  • Yang, Y.; Yamabe, T.; Kim, B.-S.; Kim, I.-S.; Enomoto, Y. Lubricating Characteristic of Grease Composites with CNT Additive. Tribol. Online 2011, 6, 247–250. DOI: 10.2474/trol.6.247.
  • Berman, D.; Erdemir, A.; Sumant, A. V. Few Layer Graphene to Reduce Wear and Friction on Sliding Steel Surfaces. Carbon 2013, 54, 454–459. DOI: 10.1016/j.carbon.2012.11.061.
  • Yujun, G.; Zhongliang, L.; Guangmeng, Z.; Yanxia, L. Effects of Multi-Walled Carbon Nanotubes Addition on Thermal Properties of Thermal Grease. Int. J. Heat Mass Transf. 2014, 74, 358–367. DOI: 10.1016/j.ijheatmasstransfer.2014.03.009.
  • Sridhara, V.; Satapathy, L. Effect of Nanoparticles on Thermal Properties Enhancement in Different Oils–a Review. Crit. Rev. Solid State Mater. Sci. 2015, 40, 399–424. DOI: 10.1080/10408436.2015.1068159.
  • Hong, H.; Thomas, D.; Waynick, A.; Yu, W.; Smith, P.; Roy, W. Carbon Nanotube Grease with Enhanced Thermal and Electrical Conductivities. J. Nanopart. Res. 2010, 12, 529–535. DOI: 10.1007/s11051-009-9803-y.
  • Bhaumik, S.; Prabhu, S.; Singh, K. J. Analysis of Tribological Behavior of Carbon Nanotube Based Industrial Mineral Gear Oil 250 cSt Viscosity. Adv. Tribol. 2014, 2014, 1–8. DOI: 10.1155/2014/341365.
  • Kałużny, J.; Waligorski, M.; Szymański, G. M.; Merkisz, J.; Różański, J.; Nowicki, M.; Al Karawi, M.; Kempa, K. Reducing Friction and Engine Vibrations with Trace Amounts of Carbon Nanotubes in the Lubricating Oil. Tribol. Int. 2020, 151, 106484. DOI: 10.1016/j.triboint.2020.106484.
  • Chen, H.; Wei, H.; Chen, M.; Meng, F.; Li, H.; Li, Q. Enhancing the Effectiveness of Silicone Thermal Grease by the Addition of Functionalized Carbon Nanotubes. Appl. Surf. Sci. 2013, 283, 525–531. DOI: 10.1016/j.apsusc.2013.06.139.
  • Shahil, K. M.; Balandin, A. A. Thermal Properties of Graphene and Multilayer Graphene: Applications in Thermal Interface Materials. Solid State Commun. 2012, 152, 1331–1340. DOI: 10.1016/j.ssc.2012.04.034.
  • Bhat, S. A.; Charoo, M. Effect of Additives on the Tribological Properties of Various Greases-A Review. Mater. Today: Proc. 2019, 18, 4416–4420. DOI: 10.1016/j.matpr.2019.07.410.
  • Mohamed, A.; Ali, S.; Osman, T.; Kamel, B. M. Development and Manufacturing an Automated Lubrication Machine Test for Nano Grease. J. Mater. Res. Technol. 2020, 9, 2054–2062. DOI: 10.1016/j.jmrt.2019.12.038.
  • Senatore, A.; Hong, H.; D’Urso, V.; Younes, H. Tribological Behavior of Novel CNTs-Based Lubricant Grease in Steady-State and Fretting Sliding Conditions. Lubricants 2021, 9, 107. DOI: 10.3390/lubricants9110107.
  • Yousef, S.; Mohamed, A. Mass Production of CNTs Using CVD Multi-Quartz Tubes. J. Mech. Sci. Technol. 2016, 30, 5135–5141. DOI: 10.1007/s12206-016-1031-7.
  • Yousef, S.; Mohamed, A.; Tatariants, M. Mass Production of Graphene Nanosheets by Multi-Roll Milling Technique. Tribol. Int. 2018, 121, 54–63. DOI: 10.1016/j.triboint.2018.01.040.
  • Pearson, S. R.; Shipway, P. H.; Abere, J. O.; Hewitt, R. A. A. The Effect of Temperature on Wear and Friction of a High Strength Steel in Fretting. Wear 2013, 303, 622–631. DOI: 10.1016/j.wear.2013.03.048.
  • El Shalakany, A. B.; Kamel, B. M.; Khattab, A.; Osman, T.; Azzam, B.; Zaki, M. Improved Mechanical and Tribological Properties of A356 Reinforced by MWCNTs. Fuller. Nanot. Carbon Nanostruct. 2018, 26, 185–194. DOI: 10.1080/1536383X.2017.1415888.
  • Owens, L. K. Grease Removal by a Completely Mixed Activated Sludge Plant and Methods for Enhancing Grease Removal. Virginia Polytechnic Institute and State University, 1970.
  • Birleanu, C.; Pustan, M.; Cioaza, M.; Molea, A.; Popa, F.; Contiu, G. Effect of TiO2 Nanoparticles on the Tribological Properties of Lubricating Oil: An Experimental Investigation. Sci. Rep. 2022, 12, 17. DOI: 10.1038/s41598-022-09245-2.
  • Wang, L. K.; Wang, M.-H. S. Oil and Grease Determination, Solvent Hazards and Waste Disposal Whwn Using Trichloromethane (Chloroform) for Extraction. In Evolutionary Progress in Science, Technology, Engineering, Arts and Mathematics (STEAM); Lenox Institute Press: MA, USA, 2022; 1–57.
  • Nabhan, A.; Rashed, A.; Ghazaly, N. M.; Abdo, J.; Haneef, M. D. Tribological Properties of Al2O3 Nanoparticles as Lithium Grease Additives. Lubricants 2021, 9, 9. DOI: 10.3390/lubricants9010009.
  • Björn, A.; de La Monja, P. S.; Karlsson, A.; Ejlertsson, J.; Svensson, B. H. Rheological Characterization. Biogas 2012, 1, 63–76.
  • https://www.astm.org/DATABASE.CART/HISTORICAL/D2266-01.htm.
  • Sulgani, M. T.; Karimipour, A. Improve the Thermal Conductivity of 10w40-Engine Oil at Various Temperature by Addition of Al2O3/Fe2O3 Nanoparticles. J. Mol. Liq. 2019, 283, 660–666. DOI: 10.1016/j.molliq.2019.03.140.
  • Yang, L.; Mao, M.; Huang, J-n.; Ji, W. Enhancing the Thermal Conductivity of SAE 50 Engine Oil by Adding Zinc Oxide Nano-Powder: An Experimental Study. Powder Technol. 2019, 356, 335–341. DOI: 10.1016/j.powtec.2019.08.031.
  • Kotia, A.; Ghosh, S. K. Experimental Analysis for Rheological Properties of Aluminium Oxide (Al2O3)/Gear Oil (SAE EP-90) Nanolubricant Used in HEMM. Ind. Lubric. Tribol. 2015, 67, 600–605. DOI: 10.1108/ILT-03-2015-0029.
  • Mohamed, A.; Tirth, V.; Kamel, B. M. Tribological Characterization and Rheology of Hybrid Calcium Grease with Graphene Nanosheets and Multi-Walled Carbon Nanotubes as Additives. J. Mater. Res. Technol. 2020, 9, 6178–6185. DOI: 10.1016/j.jmrt.2020.04.020.
  • Alqahtani, B.; Hoziefa, W.; Abdel Moneam, H. M.; Hamoud, M.; Salunkhe, S.; Elshalakany, A. B.; Abdel-Mottaleb, M.; Davim, J. P. Tribological Performance and Rheological Properties of Engine Oil with Graphene Nano-Additives. Lubricants 2022, 10, 137. DOI: 10.3390/lubricants10070137.
  • Wang, B.; Qiu, F.; Barber, G. C.; Zou, Q.; Wang, J.; Guo, S.; Yuan, Y.; Jiang, Q. Role of Nano-Sized Materials as Lubricant Additives in Friction and Wear Reduction: A Review. Wear 2022, 490-491, 204206. DOI: 10.1016/j.wear.2021.204206.
  • Del Río, J. M. L.; Guimarey, M. J.; Prado, J. I.; Lugo, L.; López, E. R.; Comuñas, M. J. Improving the Tribological Performance of a Biodegradable Lubricant Adding Graphene Nanoplatelets as Additives. J. Mol. Liq. 2022, 345, 117797. DOI: 10.1016/j.molliq.2021.117797.
  • Ali, M. K. A.; Abdelkareem, M. A.; Elagouz, A.; Xianjun, H. Nanolubricant Additives. Chapter 32. Nanotechnology in the Automotive Industry; Elsevier, 2022; pp 675–711.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.