94
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Obtaining a stable olefin-based drilling fluid using non-treated produced water

, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 609-617 | Received 15 Jul 2022, Accepted 21 Jan 2023, Published online: 01 Feb 2023

References

  • Abdul Habib, N. S. H.; Yunus, R.; Rashid, U.; Taufiq-Yap, Y. H.; Abidin, Z. Z.; Syam, A. M.; Irawan, S. Transesterifcation Reaction for Synthesis of Palm-Based Ethylhexyl Ester and Formulation as Base Oil for Synthetic Drilling Fluid. J. Oleo. Sci. 2014, 63, 497–506. DOI: 10.5650/jos.ess13220.
  • Caenn, R.; Darley, H. C. H.; Gray, G. R. Drilling and Drilling Fluids Waste Management. Composition and Properties of Drilling and Completion Fluids, 2017; pp 597–636. DOI: 10.1016/b978-0-12-804751-4.00014-6.
  • de Almeida, P. C.; Araújo, O. d Q.; de Medeiros, J. L. Managing Offshore Drill Cuttings Waste for Improved Sustainability. J. Clean. Prod. 2017, 165, 143–156. DOI: 10.1016/j.jclepro.2017.07.062.
  • Liu, Z. M.; Jin, Y. Q.; Yuan, G. Q.; Law, M. J. The Treatment and Disposal of Produced Water from Onshore Oilfields. Appl. Mech. Mater 2013, 361–363, 567–573. DOI: 10.4028/www.scientific.net/AMM.361-363.567.
  • Echchelh, A.; Hess, T.; Sakrabani, R. Reusing Oil and Gas Produced Water for Irrigation of Food Crops in Drylands. Agric. Water Manage. 2018, 206, 124–134. DOI: 10.1016/j.agwat.2018.05.006.
  • Gray, M. Reuse of Produced Water in the Oil and Gas Industry. 2020 SPE International Conference and Exhibition on HSE and Sustainability, 2020. DOI: 10.2118/199498-MS.
  • Sluijterman, A. C.; Al-Lawati, Y.; Al-Asmi, S.; Verbeek, P. H. J.; Schaapveld, M. A. S.; Cramwinckel, J. Opportunities for Re-Use of Produced Water around Desert Oil Fields. 11th ADIPEC Abu Dhabi International Petroleum Exhibition and Conference, 2004, 123–129. DOI: 10.2118/88667-MS.
  • Tipton, D. S. Mid-Continent Water Management for Stimulation Operations. SPE Hydraulic Fracturing Technology Conference and Exhibition, 2014, 176–180. DOI: 10.2118/168593-MS.
  • Jiang, Q.; Rentschler, J.; Perrone, R.; Liu, K. Application of Ceramic Membrane and Ion-Exchange for the Treatment of the Flowback Water from Marcellus Shale Gas Production. J. Memb. Sci. 2013, 431, 55–61. DOI: 10.1016/j.memsci.2012.12.030.
  • Dodd, M.; Donaldson, B.; Harvey, Y. Simple, Environmentally Friendly, and Economical Methods to Maximize the Reuse of Produced Water for Frac Operations. SPE/AAPG/SEG Unconventional Resources Technology Conference, 2016. DOI: 10.15530/URTEC-2016-2461585.
  • Barnes, C. M.; Marshall, R.; Mason, J.; Skodack, D.; DeFosse, G.; Smith, D. G.; Foreman, S.; Hanna, T.; Cecchini, M. The New Reality of Hydraulic Fracturing: Treating Produced Water is Cheaper than Using Fresh. SPE Annual Technical Conference and Exhibition, Jan 2015, 3169–3197. DOI: 10.2118/174956-MS.
  • Poclin, H. R.; Watanabe, J. F.; Ortiz, H. Commingled Reinjection of Cuttings and Produced Water Provides a Zero-Discharge Solution for the Development Phase of the Pirana Field in the Peruvian Amazon Region. SPE Latin American and Caribbean Petroleum Engineering Conference. 2015. DOI: 10.2118/177225-MS.
  • Ribeiro, L. S.; Dantas, T. N. C.; Neto, A. A. D.; Melo, K. C.; Moura, M.; Aum, P. T. P. The Use of Produced Water in Water-Based Drilling Fluids: Influence of Calcium and Magnesium Concentrations. Braz. J. Pet. Gas 2016, 10, 233–245. DOI: 10.5419/bjpg2016-0019.
  • Ge, D.; Peng, J.; Li, K.; Huang, C.; Lian, M.; Yang, Z. Influence of Water-Based Drilling Fluids on the Performance of the Fluidic down-the-Hole Hammer. J. Pet. Sci. Eng. 2020, 195, 107817. DOI: 10.1016/j.petrol.2020.107817.
  • Jiang, G.; Ni, X.; Li, W.; Quan, X.; Luo, X. Super-Amphiphobic, Strong Self-Cleaning and High-Efficiency Water-Based Drilling Fluids. Pet. Explor. Dev. 2020, 47, 421–429. DOI: 10.1016/S1876-3804(20)60059-3.
  • Wang, K.; Jiang, G.; Li, X.; Luckham, P. F. Study of Graphene Oxide to Stabilize Shale in Water-Based Drilling Fluids. Colloids Surfaces A, Physicochem. Eng. Asp. 2020, 606, 125457. DOI: 10.1016/j.colsurfa.2020.125457.
  • da Silva, D. C.; de, A.; Wanderley Neto, O.; Peres, A. E. C.; Dantas Neto, A. A.; Castro Dantas, T. N. Removal of Oil from Produced Water by Ionic Flocculation Using Saponified Babassu Coconut Oil. J. Mater. Res. Technol. 2020, 9, 4476–4484. DOI: 10.1016/j.jmrt.2020.02.075.
  • Aghdam, S. B.; Moslemizadeh, A.; Kowsari, E.; Asghari, N. Synthesis and Performance Evaluation of a Novel Polymeric Fluid Loss Controller in Water-Based Drilling Fluids: High-Temperature and High-Salinity Conditions. J. Nat. Gas Sci. Eng. 2020, 83, 103576. DOI: 10.1016/j.jngse.2020.103576.
  • Hajiabadi, S. H.; Aghaei, H.; Ghabdian, M.; Kalateh-Aghamohammadi, M.; Esmaeilnezhad, E.; Choi, H. J. On the Attributes of Invert-Emulsion Drilling Fluids Modified with Graphene Oxide/Inorganic Complexes. J. Ind. Eng. Chem. 2020, 93, 290–301. DOI: 10.1016/j.jiec.2020.10.005.
  • Echt, T.; Stoxreiter, T.; Plank, J. Impact of the Drilling Fluid System on the Effectiveness of a High Pressure Jetting Assisted Rotary Drilling System. Heliyon 2020, 6, e04179. DOI: 10.1016/j.heliyon.2020.e04179.
  • Rodrigues, R. K.; Martins, S. d F.; Naccache, M. F.; de Souza Mendes, P. R. Rheological Modifiers in Drilling Fluids. J. Nonnewton. Fluid Mech. 2020, 286, 104397. DOI: 10.1016/j.jnnfm.2020.104397.
  • Zheng, Y.; Amiri, A.; Polycarpou, A. A. Enhancements in the Tribological Performance of Environmentally Friendly Water-Based Drilling Fluids Using Additives. Appl. Surf. Sci. 2020, 527, 146822. DOI: 10.1016/j.apsusc.2020.146822.
  • Li, W.; Zhao, X.; Ji, Y.; Peng, H.; Chen, B.; Liu, L.; Han, X. Investigation of Biodiesel-Based Drilling Fluid. Part 2: Formulation Design, Rheological Study, and Laboratory Evaluation. SPE J. 2016, 21, 1767–1781. DOI: 10.2118/180926-PA.
  • Qudaihy, D. S.; Al Nughaimish, F. N.; Sunbul, A. H.; Ansari, A. A.; Hembling, D. E.; Al-Faraj, O. A.; Voll, B. A. Improving Horizontal-Well Productivity Using Novel Technology and Optimization of Drilling Fluid. SPE Drill. Complet. 2005, 20, 205–208. DOI: 10.2118/85332-PA.
  • Ferroudji, H.; Hadjadj, A.; Rahman, M. A.; Hassan, I.; Maheshwari, P.; Odan, M. A. Study of Ostwald-de Waele Fluid Flow in an Elliptical Annulus Using the Slot Model and the CFD Approach. J. Dispersion Sci. Technol. 2020, 42, 1395–1407. DOI: 10.1080/01932691.2020.1764853.
  • Quintero, L. An Overview of Surfactant Applications in Drilling Fluids for the Petroleum Industry. J. Dispersion Sci. Technol. 2010, 23, 393–404. DOI: 10.1080/01932690208984212.
  • Elkatatny, S.; Tariq, Z.; Mahmoud, M. Real Time Prediction of Drilling Fluid Rheological Properties Using Artificial Neural Networks Visible Mathematical Model (White Box). J. Pet. Sci. Eng. 2016, 146, 1202–1210. DOI: 10.1016/j.petrol.2016.08.021.
  • Mahmoud, H.; Hamza, A.; Nasser, M. S.; Hussein, I. A.; Ahmed, R.; Karami, H. Hole Cleaning and Drilling Fluid Sweeps in Horizontal and Deviated Wells: Comprehensive Review. J. Pet. Sci. Eng. 2020, 186, 106748. DOI: 10.1016/j.petrol.2019.106748.
  • Liu, X.; Nair, S.; Aughenbaugh, K.; van Oort, E. Mud-to-Cement Conversion of Non-Aqueous Drilling Fluids Using Alkali-Activated Fly Ash. J. Pet. Sci. Eng. 2019, 182, 106242. DOI: 10.1016/j.petrol.2019.106242.
  • Nwaka, N.; Wei, C.; Ambrus, A.; Chen, Y. Gas in Riser: On Modeling Gas Influxes in Non-Aqueous Drilling Fluids with Time-Dependent Desorption Considerations. J. Pet. Sci. Eng. 2020, 195, 107785. DOI: 10.1016/j.petrol.2020.107785.
  • da Silva, D. C.; Barbosa de Araújo, C. R.; Freitas, J. d O.; Felipe Rodrigues, M. A.; Neto, A. d. O. Formulation of New Microemulsion Systems Containing Produced Water for Removal of Filter Cake from Olefin-Based Drilling Fluid. J. Pet. Sci. Eng. 2020, 193, 107425. DOI: 10.1016/j.petrol.2020.107425.
  • De Lima, R. M. G.; Wildhagen, G.; Da Cunha, J.; Afonso, J. C. Remoção do Íon Amônio de Águas Produzidas na Exploração de Petróleo em Áreas Offshore Por Adsorção em Clinoptilolita. Quim. Nova 2008, 31, 1237–1242. DOI: 10.1590/S0100-40422008000500054.
  • Li, W.; Zhao, X.; Ji, Y.; Peng, H.; Chen, B.; Liu, L.; Han, X. Investigation of Biodiesel-Based Drilling Fluid. Part 1: Biodiesel Evaluation, Invert-Emulsion Properties, and Development of a Novel Emulsifier Package. SPE J. 2016, 21, 1755–1766. DOI: 10.2118/180918-PA.
  • Magalhães, S. C.; Calçada, L. A.; Scheid, C. M.; Almeida, H.; Waldmann, A. T. A. Improving Drilling Performance with Continuous Online Measurements of Electrical Stability and Conductivity in Oil Based Drilling Fluids. J. Pet. Sci. Eng. 2016, 146, 369–379. DOI: 10.1016/j.petrol.2016.05.045.
  • Palaoro, G.; Andrade, D. E. V.; Galdino, J. F.; Franco, A. T.; Alves, E.; Waldmann, A. Influence of Pressure on the Gel Strength and on the Solid-like Behavior for an Inverted Emulsion Drilling Fluid. J. Pet. Sci. Eng. 2022, 219, 111114. DOI: 10.1016/j.petrol.2022.111114.
  • Salubi, V.; Mahon, R.; Oluyemi, G. The Combined Effect of Fluid Rheology, Inner Pipe Rotation and Eccentricity on the Flow of Newtonian and Non-Newtonian Fluid through the Annuli. J. Pet. Sci. Eng. 2022, 211, 110018. DOI: 10.1016/j.petrol.2021.110018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.