185
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Evaluation of physical stability of whey protein-stabilized red palm oil emulsion by monitoring the changes of droplets characteristics

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 619-631 | Received 06 Sep 2022, Accepted 21 Jan 2023, Published online: 08 Feb 2023

References

  • Loganathan, R.; Subramaniam, K. M.; Radhakrishnan, A. K.; Choo, Y. M.; Teng, K. T. Health-Promoting Effects of Red Palm Oil: Evidence from Animal and Human Studies. Nutr. Rev. 2017, 75, 98–113. DOI: 10.1093/nutrit/nuw054.
  • Ping, B. T. Y.; Idris, C. A. C.; Maurad, Z. A. Oxidative stability of Refined Red Palm Olein under Two Malaysian Storage Conditions. J. Oleo Sci. 2020, 69, 1209–1218. DOI: 10.5650/jos.ess20045.
  • Tan, Y.; McClements, D. J. Improving the Bioavailability of Oil-Soluble Vitamins by Optimizing Food Matrix Effects: A Review. Food Chem. 2021, 348, 129148. DOI: 10.1016/j.foodchem.2021.129148.
  • You, C. S.; Parker, R. S.; Swanson, J. E. Bioavailability and Vitamin a Value of Carotenes from Red Palm Oil Assessed by an Extrinsic Isotope Reference Method. Asia Pac J. Clin. Nutr. 2002, 11 Suppl 7, S438–S442. DOI: 10.1046/j.1440-6047.11.s.7.1.x.
  • Ayu, D. F.; Andarwulan, N.; Hariyadi, P.; Purnomo, E. H. Photo-Oxidative Changes of Red Palm Oil as Affected by Light Intensity. Int. Food Res. J. 2017, 24, 1270–1277.
  • Malau, K.; Andarwulan, N.; Martianto, D.; Gitapratiwi, D.; Wulan, A. C.; Fitriani, D.; Hariyadi, P. Kinetics of Vitamin a Degradation and Oxidation of Palm Oil Fortified with Retinyl Palmitate and β-Carotene from Red Palm Oil. IJOP 2019, 2, 108–119. DOI: 10.35876/ijop.v2i3.44.
  • Boon, C. S.; McClements, D. J.; Weiss, J.; Decker, E. A. Factors influencing the Chemical Stability of Carotenoids in Foods. Crit. Rev. Food Sci. Nutr. 2010, 50, 515–532. DOI: 10.1080/10408390802565889.
  • Mao, L.; Wang, D.; Liu, F.; Gao, Y. Emulsion Design for the Delivery of β-Carotene in Complex Food Systems. Crit. Rev. Food Sci. Nutr. 2018, 58, 770–784. DOI: 10.1080/10408398.2016.1223599.
  • Kim, W.; Wang, Y.; Selomulya, C. Dairy and Plant Proteins as Natural Food Emulsifiers. Trends Food Sci. Technol. 2020, 105, 261–272. DOI: 10.1016/j.tifs.2020.09.012.
  • Ha, H. K.; Rankin, S. A.; Lee, M. R.; Lee, W. J. Development and Characterization of Whey Protein-Based Nano-Delivery Systems: A Review. Molecules 2019, 24, 3254–3217. DOI: 10.3390/molecules24183254.
  • McClements, D. J. Protein-Stabilized Emulsions. Curr. Opin. Colloid Interface Sci. 2004, 9, 305–313. DOI: 10.1016/j.cocis.2004.09.003.
  • Cornacchia, L.; Roos, Y. H. Stability of β-Carotene in Protein-Stabilized Oil-in-Water Delivery Systems. J. Agric. Food Chem. 2011, 59, 7013–7020. DOI: 10.1021/jf200841k.
  • Ricaurte, L.; Hernández-Carrión, M.; Moyano-Molano, M.; Clavijo-Romero, A.; Quintanilla-Carvajal, M. Physical, Thermal and Thermodynamical Study of High Oleic Palm Oil Nanoemulsions. Food Chem. 2018, 256, 62–70. DOI: 10.1016/j.foodchem.2018.02.102.
  • Sandoval-Cuellar, C. E.; de Jesus Perea-Flores, M.; Quintanilla-Carvajal, M. X.; de, M.; Perea-Flores, J.; Quintanilla-Carvajal, M. X. In-Vitro Digestion of Whey Protein- and Soy Lecithin-Stabilized High Oleic Palm Oil Emulsions. J. Food Eng. 2020, 278, 109918–109918. DOI: 10.1016/j.jfoodeng.2020.109918.
  • Mohamad, W.; McNaughton, D.; Buckow, R.; Augustin, M. A. Stability and Partitioning of β-Carotene in Whey Protein Emulsions during Storage. Food Funct. 2017, 8, 3917–3925. DOI: 10.1039/c7fo01012e.
  • Zhou, X.; Wang, H.; Wang, C.; Zhao, C. C.; Peng, Q.; Zhang, T.; Zhao, C. C. Stability and in Vitro Digestibility of Beta-Carotene in Nanoemulsions Fabricated with Different Carrier Oils. Food Sci. Nutr. 2018, 6, 2537–2544. DOI: 10.1002/fsn3.862.
  • Ricaurte, L.; Perea-Flores, M. D. J.; Martinez, A.; Quintanilla-Carvajal, M. X. Production of High-Oleic Palm Oil Nanoemulsions by High-Shear Homogenization (Microfluidization). Innovative Food Sci. Emerg. Technol. 2016, 35, 75–85. DOI: 10.1016/j.ifset.2016.04.004.
  • Mohamad, W.; McNaughton, D.; Augustin, M. A.; Buckow, R.; Wan Mohamad, W. A. F.; McNaughton, D.; Augustin, M. A.; Buckow, R. Characterisation of β-Carotene Partitioning in Protein Emulsions: Effects of Pre-Treatments, Solid Fat Content and Emulsifier Type. Food Chem. 2018, 257, 361–367. DOI: 10.1016/j.foodchem.2018.03.027.
  • Armetha, V.; Hariyadi, P.; Sitanggang, A.; Yuliani, S. Physical Characterization of Red Palm Oil Emulsion. In: Proceedings of the 6th Food Ingredient Asia Conference (6th FiAC 2020) - Food Science, Nutrition and Health, 2022; pp. 185–190. DOI: 10.5220/0010641200003108.
  • Borba, C. M.; Tavares, M. N.; Macedo, L. P.; Araújo, G. S.; Furlong, E. B.; Dora, C. L.; Burkert, J. F. M. Physical and Chemical Stability of β-Carotene Nanoemulsions during Storage and Thermal Process. Food Res. Int. 2019, 121, 229–237. DOI: 10.1016/j.foodres.2019.03.045.
  • International Standard Organization (ISO). International standard (ISO) 22412 Particle size analysis–Dynamic light scattering (DLS), 2017:1–33.
  • Mantovani, R. A.; Cavallieri, Â. L. F.; Netto, F. M.; Cunha, R. L. Stability and in Vitro Digestibility of Emulsions Containing Lecithin and Whey Proteins. Food Funct. 2013, 4, 1322–1331. DOI: 10.1039/c3fo60156k.
  • Slomkowski, S.; Alemán, J. V.; Gilbert, R. G.; Hess, M.; Horie, K.; Jones, R. G.; Kubisa, P.; Meisel, I.; Mormann, W.; Penczek, S.; Stepto, R. F. T. Terminology of Polymers and Polymerization Processes in Dispersed Systems (IUPAC Recommendations 2011). Pure Appl. Chem. 2011, 83, 2229–2259. DOI: 10.1351/PAC-REC-10-06-03.
  • Anton, N.; Benoit, J. P.; Saulnier, P. Design and Production of Nanoparticles Formulated from Nano-Emulsion templates-A Review. J. Control Release 2008, 128, 185–199. DOI: 10.1016/j.jconrel.2008.02.007.
  • McClements, D. J. Nanoemulsions versus Microemulsions: Terminology, Differences, and Similarities. Soft Matter 2012, 8, 1719–1729. DOI: 10.1039/C2SM06903B.
  • McCarthy, N. A.; Kelly, A. L.; O’Mahony, J. A.; Hickey, D. K.; Chaurin, V.; Fenelon, M. A. Effect of Protein Content on Emulsion Stability of a Model Infant Formula. Int. Dairy J. 2012, 25, 80–86. DOI: 10.1016/j.idairyj.2012.03.003.
  • Krstonošić, V. S.; Kalić, M. D.; Dapčević-Hadnađev, T. R.; Lončarević, I. S.; Hadnađev, M. S. Physico-Chemical Characterization of Protein Stabilized Oil-in-Water Emulsions. Colloids Surf, A. 2020, 602, 125045. DOI: 10.1016/j.colsurfa.2020.125045.
  • Dybowska, B. E. Milk and Whey Protein-Stabilized O/W Emulsions with Increasing Oil Content. Milchwissenschaft 2004, 59, 355–358.
  • Adjonu, R.; Doran, G.; Torley, P.; Agboola, S. Whey protein Peptides as Components of Nanoemulsions: A Review of Emulsifying and Biological Functionalities. J. Food Eng. 2014, 122, 15–27. DOI: 10.1016/j.jfoodeng.2013.08.034.
  • Wooster, T. J.; Golding, M.; Sanguansri, P. Impact of Oil Type on Nanoemulsion Formation and Ostwald Ripening Stability. Langmuir 2008, 24, 12758–12765. DOI: 10.1021/la801685v.
  • Krešić, G.; Lelas, V.; Herceg, Z.; Režek, A. Effects of High Pressure on Functionality of Whey Protein Concentrate and Whey Protein Isolate. Lait 2006, 86, 303–315. DOI: 10.1051/lait:2006012.
  • Gaonkar, G.; Koka, R.; Chen, K.; Campbell, B. Emulsifying functionality of Enzyme-Modified Milk Proteins in O/W and Mayonnaise-like Emulsions. Afr. J. Food Sci. 2010, 4, 16–25.
  • McClements, D. J. Critical review of Techniques and Methodologies for Characterization of Emulsion Stability. Crit. Rev. Food Sci. Nutr. 2007, 47, 611–649. DOI: 10.1080/10408390701289292.
  • Dapčević Hadnađev, T.; Dokić, P.; Krstonošić, V.; Hadnađev, M. Influence of Oil Phase Concentration on Droplet Size Distribution and Stability of Oil-in-Water Emulsions. Eur. J. Lipid Sci. Technol. 2013, 115, 313–321. DOI: 10.1002/ejlt.201100321.
  • Dybowska, B. E. Whey protein-Stabilized Emulsion Properties in Relation to Thermal Modification of the Continuous Phase. J. Food Eng. 2011, 104, 81–88. DOI: 10.1016/j.jfoodeng.2010.11.030.
  • Puyol, P.; Pérez, M. D.; Horne, D. S. Heat-Induced Gelation of Whey Protein Isolates (WPI): Effect of NaCl and Protein Concentration. Food Hydrocolloids 2001, 15, 233–237. DOI: 10.1016/S0268-005X(01)00018-2.
  • He, W.; Tan, Y.; Tian, Z.; Chen, L.; Hu, F.-Q.; Wu, W.; He, W.; Tan, Y.; Tian, Z.; Chen, L.; et al. Food Protein-Stabilized Nanoemulsions as Potential Delivery Systems for Poorly Water-Soluble Drugs: preparation, in Vitro Characterization, and Pharmacokinetics in Rats. Int. J. Nanomedicine 2011, 6, 521–533. DOI: 10.2147/ijn.s17282.
  • Liu, M. In-Vitro Population Bioequivalence (PBE) Parameters for Particle Size Distribution (PSD). FY 2020 Generic Drug Regulatory Science Initiatives Public Workshop 2020, 1–14. https://www.fda.gov/media/138039/download
  • Hu, M.; Jiang, X.; Absar, M.; Choi, S.; Kozak, D.; Shen, M.; Weng, Y. T.; Zhao, L.; Lionberger, R. Equivalence Testing of Complex Particle Size Distribution Profiles Based on Earth Mover’s Distance. AAPS J 2018, 20, 1–10. DOI: 10.1208/s12248-018-0212-y.
  • Schröder, A.; Berton-Carabin, C.; Venema, P.; Cornacchia, L. Interfacial properties of Whey Protein and Whey Protein Hydrolysates and Their Influence on O/W Emulsion Stability. Food Hydrocolloids 2017, 73, 129–140. DOI: 10.1016/j.foodhyd.2017.06.001.
  • Dickinson, E. Hydrocolloids and Emulsion Stability. In Handbook of Hydrocolloids, 2nd ed.; Elsevier Inc.: Cambridge, UK, 2009, pp. 23–49. DOI: 10.1533/9781845695873.23.
  • Delahaije, R.; Sagis, L. M. C.; Yang, J. Impact of Particle Sedimentation in Pendant Drop Tensiometry. Langmuir 2022, 38, 10183–10191. DOI: 10.1021/acs.langmuir.2c01193.
  • Dickinson, E. Flocculation of Protein-Stabilized Oil-in-Water Emulsions. Colloids Surf. B. Biointerfaces 2010, 81, 130–140. DOI: 10.1016/j.colsurfb.2010.06.033.
  • Kulkarni, V. S.; Shaw, C. Preparation and Stability Testing. In Essential Chemistry for Formulators of Semisolid and Liquid Dosages; Elsevier: San Diego, US, 2016, pp 99–135. DOI: 10.1016/b978-0-12-801024-2.00007-8.
  • Tcholakova, S.; Denkov, N. D.; Ivanov, I. B.; Campbell, B. Coalescence stability of Emulsions Containing Globular Milk Proteins. Adv. Colloid Interface Sci. 2006, 123–126, 259–293. DOI: 10.1016/j.cis.2006.05.021.
  • Jang, Y.; Park, J.; Song, H. Y.; Choi, S. J. Ostwald Ripening Rate of Orange Oil Emulsions: Effects of Molecular Structure of Emulsifiers and Their Oil Composition. J. Food Sci. 2019, 84, 440–447. DOI: 10.1111/1750-3841.14464.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.