145
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis and photocatalytic activity of highly efficient NiFe2O4/r-GO based photocatalyst

, , , &
Pages 768-779 | Received 18 Nov 2022, Accepted 05 Feb 2023, Published online: 20 Feb 2023

References

  • Muraro, P. C. L.; Mortari, S. R.; Vizzotto, B. S.; Chuy, G.; Dos Santos, C.; Brum, L. F. W.; da Silva, W. L. Iron Oxide Nanocatalyst with Titanium and Silver Nanoparticles: Synthesis, Characterization and Photocatalytic Activity on the Degradation of Rhodamine B Dye. Sci. Rep. 2020, 10, 3055. DOI: 10.1038/s41598-020-59987-0.
  • Shelar, S. G.; Mahajan, V. K.; Patil, S. P.; Sonawane, G. H. Effect of Doping Parameters on Photocatalytic Degradation of Methylene Blue Using Ag Doped ZnO Nanocatalyst. SN Appl. Sci. 2020, 2, 820. DOI: 10.1007/s42452-020-2634-2.
  • Ajmal, A.; Majeed, I.; Malik, R. N.; Idriss, H.; Nadeem, M. A. Principles and Mechanisms of Photocatalytic Dye Degradation on TiO2 Based Photocatalysts: A Comparative Overview. RSC Adv. 2014, 4, 37003–37026. DOI: 10.1039/C4RA06658H.
  • Rafiq, A.; Ikram, M.; Ali, S.; Niaz, F.; Khan, M.; Khan, Q.; Maqbool, M. Photocatalytic Degradation of Dyes Using Semiconductor Photocatalysts to Clean Industrial Water Pollution. J. Indust. Engin. Chem. 2021, 97, 111–128. DOI: 10.1016/j.jiec.2021.02.017.
  • Joshi, N. C.; Congthak, R.; Gururani, P. Synthesis, Adsorptive Performances and Photo-Catalytic Activity of Graphene Oxide/TiO2 (GO/TiO2) Nanocomposite-Based Adsorbent. Nanotech. Environ. Eng. 2020, 5, 1–13. DOI: 10.1007/s41204-020-00085-x.
  • Sulistina, D. R.; Martini, S. The Effect of Rhodamine B on the Cerebellum and Brainstem Tissue of Rattus norvegicus. J. Public Health Res. 2020, 9, 1812. DOI: 10.4081/jphr.2020.1812.
  • Battula, H.; Bommi, S.; Bobde, Y.; Patel, T.; Ghosh, B.; Jayanty, S. Distinct Rhodamine B Derivatives Exhibiting Dual Effect of Anticancer Activity and Fluorescence Property. J. Photochem. Photobio 2021, 6, 100026. DOI: 10.1016/j.jpap.2021.100026.
  • Ghaida, H.; Munshi; Amal, M.; Ibrahim; Laila.; M.; Al-Harbi. Inspired Preparation of Zinc Oxide Nanocatalyst and the Photocatalytic Activity in the Treatment of Methyl Orange Dye and Paraquat Herbicide. Int. J. Photoen. 2018, DOI: 10.1155/2018/5094741.
  • Khan, F.; Khan, M. S.; Kamal, S.; Arshad, M.; Ahmad, S. I.; Nami, S. A. Recent Advances in Graphene Oxide and Reduced Graphene Oxide Based Nanocomposites for the Photodegradation of Dyes. J. Mate. Chem. C 2020, 8, 15940–15955. DOI: 10.1039/D0TC03684F.
  • Suresh, R.; Mangalaraja, R. V.; Mansilla, H. D.; Santander, P.; Yáñez, J. Reduced Graphene Oxide-Based Photocatalysis. In Green Photocatalysts; Springer: Cham. 2020; pp. 145–166.
  • Munawar, T.; Nadeem, M. S.; Mukhtar, F.; Riaz, M.; Batool, S.; Hasan, M.; Iqbal, F. Transition Metal-Doped SnO2 and Graphene Oxide (GO) Supported Nanocomposites as Efficient Photocatalysts and Antibacterial Agents. Environ. Sci. Pollut. Res. 2022, 29, 90995–91016. DOI: 10.1007/s11356-022-22144-3.
  • Yao, S.; Zhou, S.; Wang, J.; Li, W.; Li, Z. Optimizing the Synthesis of SnO2/TiO2/RGO Nanocomposites with Excellent Visible Light Photocatalytic and Antibacterial Activities. Photochem. Photobiol. Sci. 2019, 18, 2989–2999. DOI: 10.1039/c9pp00242a.
  • Kalyani, R.; Gurunathan, K. Intercalated Network of Graphene Oxide (GO)–CuO–Polythiophene (PTh) Hybrid Nanocomposite for Photocatalytic Applications. J. Mater. Sci. Mater. Electron 2016, 27, 10634–10641. DOI: 10.1007/s10854-016-5160-7. DOI:
  • Zhao, G.; Mo, Z.; Zhang, P.; Wang, B.; Zhu, X.; Guo, R. Synthesis of Graphene/Fe3O4/NiO Magnetic Nanocomposites and Its Application in Photocatalytic Degradation the Organic Pollutants in Wastewater. J. Porous Mater. 2015, 22, 1245–1253. DOI: 10.1007/s10934-015-0002-1.
  • Elshypany, R.; Selim, H.; Zakaria, K.; Moustafa, A. H.; Sadeek, S. A.; Sharaa, S. I.; Raynaud, P.; Nada, A. A. Magnetic ZnO Crystal Nanoparticle Growth on Reduced Graphene Oxide for Enhanced Photocatalytic Performance under Visible Light Irradiation. Molecules 2021, 26, 2269. DOI: 10.3390/molecules26082269.
  • Onkani, S. P.; Diagboya, P. N.; Mtunzi, F. M.; Klink, M. J.; Olu-Owolabi, B. I.; Pakade, V. Comparative Study of the Photocatalytic Degradation of 2–Chlorophenol under UV Irradiation Using Pristine and Ag-Doped Species of TiO2, ZnO and ZnS Photocatalysts. J. Environ. Manage. 2020, 260, 110145. DOI: 10.1016/j.jenvman.2020.110145.
  • Sundararajan, M.; Sailaja, V.; Kennedy, L. J.; Vijaya, J. J. Photocatalytic Degradation of Rhodamine B under Visible Light Using Nanostructured Zinc Doped Cobalt Ferrite: kinetics and Mechanism. Ceramics Int. 2017, 43, 540–548. DOI: 10.1016/j.ceramint.2016.09.191.
  • Joshi, N. C. Highly Efficient Removal of Pb2+ and Cu2+ Ions Using r-GO/PPY/SiO2 Based Nanosorbent. Int. J. Environ. Anal. Chem. 2022, DOI: 10.1080/03067319.2022.2079413.
  • Zaaba, N. I.; Foo, K. L.; Hashim, U.; Tan, S. J.; Liu, W. W.; Voon, C. H. Synthesis of Graphene Oxide Using Modified Hummers Method: solvent Influence. Proc. Eng. 2017, 184, 469–477. DOI: 10.1016/j.proeng.2017.04.118.
  • Loryuenyong, V.; Totepvimarn, K.; Eimburanapravat, P.; Boonchompoo, W.; Buasri, A. Preparation and Characterization of Reduced Graphene Oxide Sheets via Water-Based Exfoliation and Reduction Methods. Adv. Mater. Sci. Eng. 2013. DOI: 10.1155/2013/923403.
  • Saffari, J.; Shams, H. R.; Ghanbari, D.; Esmaeili, A. A Simple Chemical Method for Synthesis of NiFe2O4 Nanoparticles and Polystyrene-Based Magnetic Nanocomposites. J. Cluster Sci. 2014, 25, 1225–1236. DOI: 10.1007/s10876-014-0701-9.
  • Joshi, N. C.; Rawat, B. S.; Bisht, H.; Gajraj, V.; Kumar, V.; Kumar, N.; Chetana, S.; Gururani, P. Synthesis and Supercapacitive Behaviour of SnO2/r-GO Nanocomposite. Synth. Metals 2022, DOI: 10.1016/j.synthmet.2022.117132.
  • Diagboya, P. N.; Olu-Owolabi, B. I.; Adebowale, K. O. Synthesis of Covalently Bonded Graphene Oxide–Iron Magnetic Nanoparticles and the Kinetics of Mercury Removal. RSC Adv. 2015, 5, 2536–2542. DOI: 10.1039/C4RA13126F.
  • Gogoi, P.; Saikia, B. J.; Dolui, S. K. Effects of Nickel Oxide (NiO) Nanoparticles on the Performance Characteristics of the Jatropha Oil Based Alkyd and Epoxy Blends. J. Appl. Poly. Sci. 2015, 8, 132. DOI: 10.1002/app.41490.
  • Siddique, M. N.; Ahmed, A.; Ali, T.; Tripathi, P. Investigation of Optical Properties of Nickel Oxide Nanostructures Using Photoluminescence and Diffuse Reflectance Spectroscopy. In AIP Conference Proceedings. AIP Publishing LLC. 2018, 1953030027.
  • Rahmani, S.; Dorraji, M. S. M.; Rahmani, S.; Hajimiri, I.; Amani-Ghadim, A. R. Loading GO/ZnFe2O4/NiO Nanocomposite as a Hybrid Dielectric/Magnetic Material into Polyurethane Foam for Induction of Radar Absorbing Properties. J. Mater. Sci. Mater. Electron 2020, 31, 5107–5116. DOI: 10.1007/s10854-020-03071-w.
  • Yang, L.; Tian, J.; Meng, M.; Zhao, R.; Li, C.; Ma, J.; Jin, T. Modification and Characterization of Fe3O4 Nanoparticles for Use in Adsorption of Alkaloids. Molecules 2018, 23, 562. DOI: 10.3390/molecules23030562.
  • Nalbandian, L.; Patrikiadou, E.; Zaspalis, V.; Patrikidou, A.; Hatzidaki, E.; N.; Papandreou, C. Magnetic Nanoparticles in Medical Diagnostic Applications: synthesis, Characterization and Proteins Conjugation. Current Nanosci. 2016, 12, 455–468.
  • Pham, X. N.; Nguyen, T. P.; Pham, T. N.; Tran, T. T. N.; Tran,.; T. V.; T. Synthesis and Characterization of Chitosan-Coated Magnetite Nanoparticles and Their Application in Curcumin Drug Delivery. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016, 7, 045010.
  • Hidayah, N. M.; Liu, W. W.; Lai, C. W.; Noriman, N. Z.; Khe, C. S.; Hashim, U.; Lee, H. C. Comparison on Graphite, Graphene Oxide and Reduced Graphene Oxide: Synthesis and Characterization. In AIP Conference Proceedings 2017, 1892, 150002.
  • Sagadevan, S.; Podder, J. Investigations on Structural, Optical, Morphological and Electrical Properties of Nickel Oxide Nanoparticles. Intern. J. Nanopart. 2015, 8, 289–301.
  • Qiao, H.; Wei, Z.; Yang, H.; Zhu, L.; Yan, X. Preparation and Characterization of NiO Nanoparticles by Anodic Arc Plasma Method. J. Nanomater. 2009. DOI: 10.1155/2009/795928.
  • Silva, V. A. J.; Andrade, P. L.; Silva, M. P. C.; Valladares, L. D. L. S.; Aguiar, J. A. Synthesis and Characterization of Fe3O4 Nanoparticles Coated with Fucan Polysaccharides. J. Magnet. Magn. Mater. 2013, 343, 138–143. DOI: 10.1016/j.jmmm.2013.04.062.
  • Kumar, A.; Pandey, G. A Review on the Factors Affecting the Photocatalytic Degradation of Hazardous Materials. Mater. Sci. Eng. Int. J. 2017, 1, 1–10.
  • Bharathi, D.; AlSalhi, M. S.; Devanesan, S.; Nandagopal, J. G. T.; Kim, W.; Ranjhitkumar, R. Photocatalytic Degradation of Rhodamine B Using Green-Synthesized ZnO Nanoparticles from Sechium Edule Polysaccharides. Appl. Nanosci. 2022, 12, 2477–2487. DOI: 10.1007/s13204-022-02502-w.
  • Reza, K. M.; Kurny, A.; Gulshan, F. Parameters Affecting the Photocatalytic Degradation of Dyes Using TiO2: A Review. Appl. Water Sci. 2017, 7, 1569–1578. DOI: 10.1007/s13201-015-0367-y.
  • Mostafa, E. M.; Amdeha, E. Enhanced Photocatalytic Degradation of Malachite Green Dye by Highly Stable Visible-Light-Responsive Fe-Based Tri-Composite Photocatalysts. Environ. Sci. Pollut. Res. 2022, 29, 69861–69874. DOI: 10.1007/s11356-022-20745-6.
  • Barka, N.; Qourzal, S.; Assabbane, A.; Nounah, A.; Ait-Ichou, Y. Factors Influencing the Photocatalytic Degradation of Rhodamine B by TiO2-Coated Non-Woven Paper. J. Photochem. Photobio. A: Chem. 2008, 195, 346–351. DOI: 10.1016/j.jphotochem.2007.10.022.
  • Briton, B. G. H.; Duclaux, L.; Richardson, Y.; Yao, K. B.; Reinert, L.; Soneda, Y. Effectiveness of the Dispersion of Iron Nanoparticles within Micropores and Mesopores of Activated Carbon for Rhodamine B Removal in Wastewater by the Heterogeneous Fenton Process. Appl. Water Sci. 2019, 9, 1–14. DOI: 10.1007/s13201-019-1047-0.
  • Barakat, N. A.; Kanjwal, M. A.; Chronakis, I. S.; Kim, H. Y. Influence of Temperature on the Photodegradation Process Using Ag-Doped TiO2 Nanostructures: negative Impact with the Nanofibers. J. Mol. Catal. A: Chem. 2013, 366, 333–340. DOI: 10.1016/j.molcata.2012.10.012.
  • Guo, Y.; Zhou, C.; Fang, L.; Liu, Z.; Li, W.; Yang, M. Effect of pH on the Catalytic Degradation of Rhodamine B by Synthesized CDs/g-C3N4/CuxO Composites. ACS Omega. 2021, 6, 8119–8130.
  • Yang, H.; Yang, J. Photocatalytic Degradation of Rhodamine B Catalyzed by TiO2 Films on a Capillary Column. RSC Adv. 2018, 8, 11921–11929.
  • Huo, S. H.; Yan, X. P. Metal-Organic Framework MIL-100(Fe) for the Adsorption of Malachite Green from Aqueous Solution. J. Mater. Chem. 2012, 22, 7449–7455. DOI: 10.1039/c2jm16513a.
  • Kundu, A.; Mondal, A. Kinetics, Isotherm, and Thermodynamic Studies of Methylene Blue Selective Adsorption and Photocatalysis of Malachite Green from Aqueous Solution Using Layered Na-Intercalated Cu-Doped Titania. Appl. Clay Sci. 2019, 183, 105323. DOI: 10.1016/j.clay.2019.105323.
  • Joshi, N. C. Synthesis of r-GO/PANI/ZnO Based Material and Its Application in the Treatment of Wastewater Containing Cd2+ and Cr6+ Ions. Sep. Sci. Technol. 2022, DOI: 10.1080/01496395.2022.2069042.
  • Joshi, N. C.; Kumar, N. Potential of PTH-Fe3O4 Based Nanomaterial for the Removal of Pb (II), Cd (II), and Cr (VI) Ions. J. Inorg. Organomet. Polym. Mater. 2021. DOI: 10.1007/s10904-021-02173-0.
  • Joshi, N. C.; Gairola, S. P.; Gururani, P. Characterisations and Adsorption Behaviour of Biologically Synthesised Fe3O4 Based Hybrid Nanosorbent (Fe3O4-BHN). Mater. Chem. Phys. 2021. DOI: 10.1016/j.matchemphys.2021.124825.
  • Joshi, N. C.; Negi, S. Synthesis and Adsorption Potential of an Organic–Inorganic-Based Hybrid Nanomaterial (PANI-Al2O3). Inorg. Nano Metal Chem. 2021. DOI: 10.1080/24701556.2021.1980026.
  • Kumar, N.; Joshi, N. C. Adsorption Applications of Synthetically Prepared PANI-CuO Based Nanocomposite Material. J. Indian Chem. Soc. 2022. DOI: 10.1016/j.jics.2022.100551.
  • Joshi, N. C.; Gururani, P.; Gairola, S. P. Metal Oxide Nanoparticles and Their Nanocomposite Based Materials as Photocatalysts in the Degradation of Dyes. Biointerface Res. App. Chem. 2022, 12, 6557–6579.
  • Joshi, N. C.; Gaur, A.; Singh, A. Synthesis, Characterisations, Adsorptive Performances and Photo-Catalytic Activity of Fe3O4-SiO2 Based Nanosorbent (Fe3O4-SiO2 BN). J. Inorg. Organomet. Polym. Mater. 2020, 30, 4416–4425. DOI: 10.1007/s10904-020-01622-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.