414
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Encapsulation of resveratrol in rhamnolipid-zein nanoparticles using a pH-driven method: kinetic modeling on controlled release from nanoparticles

&
Pages 1096-1106 | Received 08 Oct 2022, Accepted 25 Mar 2023, Published online: 06 Apr 2023

References

  • Lai, C. S.; Wu, J. C.; Pan, M. H. Molecular Mechanism on Functional Food Bioactives for anti-Obesity. Curr. Opin. Food Sci. 2015, 2, 9–13. DOI: 10.1016/j.cofs.2014.11.008.
  • Frankel, E.; Waterhouse, A.; Kinsella, J. Inhibition of Human LDL Oxidation by Resveratrol. Lancet 1993, 341, 1103–1104. DOI: 10.1016/0140-6736(93)92472-6.
  • Davidov-Pardo, G.; Joye, I. J.; McClements, D. J. Encapsulation of Resveratrol in Biopolymer Particles Produced Using Liquid Antisolvent Precipitation. Part 1: Preparation and Characterization. Food Hydrocoll. 2015, 45, 309–316. DOI: 10.1016/j.foodhyd.2014.11.023.
  • Hung, C. F.; Chen, J. K.; Liao, M. H.; Lo, H. M.; Fang, J. Y. Development and Evaluation of Emulsion-Liposome Blends for Resveratrol Delivery. J. Nanosci. Nanotechnol. 2006, 6, 2950–2958. DOI: 10.1166/jnn.2006.420.
  • Patel, A.; McKnight, J. N.; Genzor, P.; Bowman, G. D. Identification of Residues in Chromodomain Helicase DNA-Binding Protein 1 (chd1) Required for Coupling Atp Hydrolysis to Nucleosome Sliding. J. Biol. Chem. 2011, 286, 43984–43993. DOI: 10.1074/jbc.m111.282970.
  • Trela, B. C.; Waterhouse, A. L. Resveratrol: Isomeric Molar Absorptivities and Stability. J. Agric. Food Chem. 1996, 44, 1253–1257. DOI: 10.1021/jf9504576.
  • Walle, T.; Hsieh, F.; DeLegge, M. H.; Oatis, J. E.; Walle, U. K. High Absorption but Very Low Bioavailability of Oral Resveratrol in Humans. Drug Metab. Dispos. 2004, 32, 1377–1382. DOI: 10.1124/dmd.104.000885.
  • Carter, L. G.; D'Orazio, J. A.; Pearson, K. J. Resveratrol and Cancer: Focus on in Vivo Evidence. Endocr.-Related Cancer 2014, 21, R209–R225. DOI: 10.1530/ERC-13-0171.
  • Ko, J. H.; Sethi, G.; Um, J. Y.; Shanmugam, M. K.; Arfuso, F.; Kumar, A. P.; Bishayee, A.; Ahn, K. S. The Role of Resveratrol in Cancer Therapy. Int. J. Mol. Sci. 2017, 18, 2589. DOI: 10.3390/ijms18122589.
  • Wan, S.; Zhang, L.; Quan, Y.; Wei, K. Resveratrol-Loaded PLGA Nanoparticles: enhanced Stability, Solubility and Bioactivity of Resveratrol for Non-Alcoholic Fatty Liver Disease Therapy. R. Soc. Open Sci. 2018, 5, 181457. DOI: 10.1098/rsos.181457.
  • Huang, X.; Dai, Y.; Cai, J.; Zhong, N.; Xiao, H.; McClements, D. J.; Hu, K. Resveratrol Encapsulation in Core-Shell Biopolymer Nanoparticles: Impact on Antioxidant and Anticancer Activities. Food Hydrocoll. 2017, 64, 157–165. DOI: 10.1016/j.foodhyd.2016.10.029.
  • Davidov-Pardo, G.; McClements, D. J. Resveratrol Encapsulation: Designing Delivery Systems to Overcome Solubility, Stability and Bioavailability Issues. Trends Food Sci. Technol. 2014, 38, 88–103. DOI: 10.1016/j.tifs.2014.05.003.
  • Liu, F.; Ma, D.; Luo, X.; Zhang, Z.; He, L.; Gao, Y.; McClements, D. J. Fabrication and Characterization of Protein-Phenolic Conjugate Nanoparticles for co-Delivery of Curcumin and Resveratrol. Food Hydrocoll. 2018, 79, 450–461. DOI: 10.1016/j.foodhyd.2018.01.017.
  • Pascoli, M.; de Lima, R.; Fraceto, L. F. Zein Nanoparticles and Strategies to Improve Colloidal Stability: A Mini-Review. Front. Chem. 2018, 6, 6. DOI: 10.3389/fchem.2018.00006.
  • Penalva, R.; Esparza, I.; Larraneta, E.; Gonzalez-Navarro, C. J.; Gamazo, C.; Irache, J. M. Zein-Based Nanoparticles Improve the Oral Bioavailability of Resveratrol and Its anti-Inflammatory Effects in a Mouse Model of Endotoxic Shock. J. Agric. Food Chem. 2015, 63, 5603–5611. DOI: 10.1021/jf505694e.
  • Anderson, T. J.; Lamsal, B. P. Zein Extraction from Corn, Corn Products, and Coproducts and Modifications for Various Applications: A Review. Cereal Chem. J. 2011, 88, 159–173. DOI: 10.1094/CCHEM-06-10-0091.
  • Shukla, R.; Cheryan, M. Zein: The Industrial Protein from Corn. Ind. Crops Prod. 2001, 13, 171–192. DOI: 10.1016/S0926-6690(00)00064-9.
  • Dai, L.; Zhou, H.; Wei, Y.; Gao, Y.; McClements, D. J. Curcumin Encapsulation in Zein-Rhamnolipid Composite Nanoparticles Using a pH-Driven Method. Food Hydrocoll. 2019, 93, 342–350. DOI: 10.1016/j.foodhyd.2019.02.041.
  • Wang, X.; Huang, H.; Chu, X.; Han, Y.; Li, M.; Li, G.; Liu, X. Encapsulation and Binding Properties of Curcumin in Zein Particles Stabilized by Tween 20. Colloids Surf. A 2019, 577, 274–280. DOI: 10.1016/j.colsurfa.2019.05.094.
  • Xiao, D.; Gömmel, C.; Davidson, P. M.; Zhong, Q. Intrinsic Tween 20 Improves Release and Antilisterial Properties of Co-Encapsulated Nisin and Thymol. J. Agric. Food Chem. 2011, 59, 9572–9580. DOI: 10.1021/jf201864v.
  • Hu, K.; McClements, D. J. Fabrication of Surfactant-Stabilized Zein Nanoparticles: A pH Modulated Antisolvent Precipitation Method. Food Res. Int. 2014, 64, 329–335. DOI: 10.1016/j.foodres.2014.07.004.
  • Chen, L. C.; Chen, Y. C.; Su, C. Y.; Wong, W. P.; Sheu, M. T.; Ho, H. O. Development and Characterization of Lecithin-Based Self-Assembling Mixed Polymeric Micellar (saMPMs) Drug Delivery Systems for Curcumin. Sci. Rep. 2016, 6, 37122. DOI: 10.1038/srep37122.
  • Chen, H.; Zhong, Q. Processes Improving the Dispersibility of Spray-Dried Zein Nanoparticles Using Sodium Caseinate. Food Hydrocoll. 2014, 35, 358–366. DOI: 10.1016/j.foodhyd.2013.06.012.
  • Li, M. F.; Chen, L.; Xu, M. Z.; Zhang, J. L.; Wang, Q.; Zeng, Q. Z.; Wei, X. C.; Yuan, Y. The Formation of Zein-Chitosan Complex Coacervated Particles: Relationship to Encapsulation and Controlled Release Properties. Int. J. Biol. Macromol. 2018, 116, 1232–1239. DOI: 10.1016/j.ijbiomac.2018.05.107.
  • Luo, Y.; Zhang, B.; Whent, M.; Yu, L. L.; Wang, Q. Preparation and Characterization of Zein/Chitosan Complex for Encapsulation of α-Tocopherol, and Its in Vitro Controlled Release Study. Colloids Surf. B 2011, 85, 145–152. DOI: 10.1016/j.colsurfb.2011.02.020.
  • Cacua, K.; Ordoñez, F.; Zapata, C.; Herrera, B.; Pabón, E.; Buitrago-Sierra, R. Surfactant Concentration and pH Effects on the Zeta Potential Values of Alumina Nanofluids to Inspect Stability. Colloids Surf. A 2019, 583, 123960. DOI: 10.1016/j.colsurfa.2019.123960.
  • Özdemir, G.; Peker, S.; Helvaci, S. Effect of pH on the Surface and Interfacial Behavior of Rhamnolipids R1 and R2. Colloids Surf. A 2004, 234, 135–143. DOI: 10.1016/j.colsurfa.2003.10.024.
  • Pan, K.; Luo, Y.; Gan, Y.; Baek, S. J.; Zhong, Q. pH-Driven Encapsulation of Curcumin in Self-Assembled Casein Nanoparticles for Enhanced Dispersibility and Bioactivity. Soft Matter 2014, 10, 6820. DOI: 10.1039/C4SM00239C.
  • Peng, S.; Li, Z.; Zou, L.; Liu, W.; Liu, C.; McClements, D. J. Improving Curcumin Solubility and Bioavailability by Encapsulation in Saponin-Coated Curcumin Nanoparticles Prepared Using a Simple pH-Driven Loading Method. Food Funct. 2018, 9, 1829–1839. DOI: 10.1039/c7fo01814b.
  • Peng, S.; Zou, L.; Zhou, W.; Liu, W.; Liu, C.; McClements, D. J. Encapsulation of Lipophilic Polyphenols into Nanoliposomes Using pH-Driven Method: Advantages and Disadvantages. J. Agric. Food Chem. 2019, 67, 7506–7511. DOI: 10.1021/acs.jafc.9b01602.
  • Cheng, C.; Peng, S.; Li, Z.; Zou, L.; Liu, W.; Liu, C. Improved Bioavailability of Curcumin in Liposomes Prepared Using a pH-Driven, Organic Solvent-Free, Easily Scalable Process. RSC Adv. 2017, 7, 25978–25986. DOI: 10.1039/C7RA02861J.
  • Wenzel, E.; Somoza, V. Metabolism and Bioavailability of Trans-Resveratrol. Mol. Nutr. Food Res. 2005, 49, 472–481. DOI: 10.1002/mnfr.200500010.
  • Andlauer, W.; Kolb, J.; Siebert, K.; Fürst, P. Assessment of Resveratrol Bioavailability in the Perfused Small Intestine of the Rat. Drugs Exp. Clin. Res. 2000, 26, 47–55.
  • Peppas, N. A.; Sahlin, J. J. A Simple Equation for the Description of Solute Release. III. Coupling of Diffusion and Relaxation. Int. J. Pharm. 1989, 57, 169–172. DOI: 10.1016/0378-5173(89)90306-2.
  • Gompertz, B. On the Nature of the Function Expressive of the Law of Human Mortality, and on a New Mode of Determining the Value of Life Contingencies. Philos. Trans. R. Soc. London B: Biol. Sci. 1825, 115, 513–583. DOI: 10.1098/rstl.1825.0026.
  • Weibull, W. A Statistical Distribution Function of Wide Applicability. Trans. ASME, J. Appl. Mech. 1951, 18, 293–297. DOI: 10.1115/1.4010337.
  • Barbir, D.; Dabic, P.; Mehes, M. The Use of PWHM and Mie Methods in Estimation of Colloidal Silver Particle Size Obtained by Chemical Precipitation with Sodium Borohydride. Hem. Ind. 2019, 73, 397–404. DOI: 10.2298/HEMIND190719031B.
  • Hansen, A.; Moll, L.; Kraus, T. E. The Effects of Biodegradation and Photodegradation on DOM Optical Properties. AGU Fall Meeting Abstracts. 2012. https://ui.adsabs.harvard.edu/abs/2012AGUFM.B21E0419H/exportcitation.
  • Guo, Q.; Shu, X.; Hu, Y.; Su, J.; Chen, S.; Decker, E. A.; Gao, Y. Formulated Protein-Polysaccharide-Surfactant Ternary Complexes for co-Encapsulation of Curcumin and Resveratrol: Characterization, Stability and in Vitro Digestibility. Food Hydrocoll. 2021, 111, 106265. DOI: 10.1016/j.foodhyd.2020.106265.
  • Siegel, R. A.; Rathbone, M. J. Overview of Controlled Release Mechanisms. In: Siepmann, J., Siegel, R. A., Rathbone, M. J., et al. editors. Fundam. Appl. Controlled Release Drug Deliv.Boston, MA: Springer, 2012, 19–43. DOI: 10.1007/978-1-4614-0881-9_2.
  • Lee, J. H.; Yeo, Y. Controlled Drug Release from Pharmaceutical Nanocarriers. Chem. Eng. Sci. 2015, 125, 75–84. DOI: 10.1016/j.ces.2014.08.046.
  • Flynn, G.; Yalkowsky, S.; Roseman, T. Mass Transport Phenomena and Models: Theoretical Concepts. J. Pharm. Sci. 1974, 63, 479–510. DOI: 10.1002/jps.2600630403.
  • Paarakh, M. P.; Jose, P. A.; Setty, C.; Christoper, G. V. P. Release Kinetics - Concepts and Applications. Int. J. Pharm. Res. Technol. 2019, 8, 12-20. DOI: 10.31838/ijprt/08.01.02.
  • Ma, Y.; Chen, S.; Liao, W.; Zhang, L.; Liu, J.; Gao, Y. Formation, Physicochemical Stability, and Redispersibility of Curcumin-Loaded Rhamnolipid Nanoparticles Using the pH-Driven Method. J. Agric. Food Chem. 2020, 68, 7103–7111. DOI: 10.1021/acs.jafc.0c01326.
  • Patra, J. K.; Das, G.; Fraceto, L. F.; Campos, E. V. R.; Rodriguez-Torres, M. D. P.; Acosta-Torres, L. S.; Diaz-Torres, L. A.; Grillo, R.; Swamy, M. K.; Sharma, S.; et al. Nano Based Drug Delivery Systems: recent Developments and Future Prospects. J Nanobiotechnol 2018, 16, 71. DOI: 10.1186/s12951-018-0392-8.
  • Huang, C.; Xue, L. F.; Hu, B.; Liu, H. H.; Huang, S. B.; Khan, S.; Meng, Y. Calycosin-Loaded Nanoliposomes as Potential Nanoplatforms for Treatment of Diabetic Nephropathy through Regulation of Mitochondrial Respiratory Function. J. Nanobiotechnol. 2021, 19, 178. DOI: 10.1186/s12951-021-00917-1.
  • Gallagher, K.; Corrigan, O. Mechanistic Aspects of the Release of Levamisole Hydrochloride from Biodegradable Polymers. J. Controlled Release 2000, 69, 261–272. DOI: 10.1016/S0168-3659(00)00305-9.
  • Peppas, N. A.; Narasimhan, B. Mathematical Models in Drug Delivery: How Modeling Has Shaped the Way we Design New Drug Delivery Systems. J. Control Release 2014, 190, 75–81. DOI: 10.1016/j.jconrel.2014.06.041.
  • Kolar‐Anić, L.; Veljković, S.; Kapor, S.; Dubljević, B. Weibull Distribution and Kinetics of Heterogeneous Processes. J. Chem. Phys. 1975, 63, 663–668. DOI: 10.1063/1.431388.
  • Papadopoulou, V.; Kosmidis, K.; Vlachou, M.; Macheras, P. On the Use of the Weibull Function for the Discernment of Drug Release Mechanisms. Int. J. Pharm. 2006, 309, 44–50. DOI: 10.1016/j.ijpharm.2005.10.044.
  • Sun, C.; Wei, Y.; Li, R.; Dai, L.; Gao, Y. Quercetagetin-Loaded Zein–Propylene Glycol Alginate Ternary Composite Particles Induced by Calcium Ions: Structure Characterization and Formation Mechanism. J. Agric. Food Chem. 2017, 65, 3934–3945. DOI: 10.1021/acs.jafc.7b00921.
  • Kiefer, J.; Radzuan, M.; Winterburn, J. Infrared Spectroscopy for Studying Structure and Aging Effects in Rhamnolipid Biosurfactants. Appl. Sci. 2017, 7, 533. DOI: 10.3390/app7050533.
  • Khademolhosseini, R.; Jafari, A.; Mousavi, S. M.; Hajfarajollah, H.; Noghabi, K. A.; Manteghian, M. Physicochemical Characterization and Optimization of Glycolipid Biosurfactant Production by a Native Strain of Pseudomonas aeruginosa HAK01 and Its Performance Evaluation for the MEOR Process. RSC Adv. 2019, 9, 7932–7947. DOI: 10.1039/c8ra10087j.
  • Leitermann, F.; Syldatk, C.; Hausmann, R. Fast Quantitative Determination of Microbial Rhamnolipids from Cultivation Broths by ATR-FTIR Spectroscopy. J. Biol. Eng. 2008, 2, 13. DOI: 10.1186/1754-1611-2-13.
  • Porto, I. C. C. M.; Nascimento, T. G.; Oliveira, J. M. S.; Freitas, P. H.; Haimeur, A.; França, R. Use of Polyphenols as a Strategy to Prevent Bond Degradation in the Dentin-Resin Interface. Eur. J. Oral Sci. 2018, 126, 146–158. DOI: 10.1111/eos.12403.
  • Xing, M.; Zhao, H.; Ahmed, R.; Wang, X.; Liu, J.; Wang, J.; Guo, A.; Wang, M. Fabrication of Resveratrol-Loaded Zein Nanoparticles Based on Flash Nanoprecipitation. Colloids Surf. A 2022, 654, 129829. DOI: 10.1016/j.colsurfa.2022.129829.
  • Fan, Y.; Liu, Y.; Gao, L.; Zhang, Y.; Yi, J. Improved Chemical Stability and Cellular Antioxidant Activity of Resveratrol in Zein Nanoparticle with Bovine Serum Albumin-Caffeic Acid Conjugate. Food Chem. 2018, 261, 283–291. DOI: 10.1016/j.foodchem.2018.04.055.
  • Kuroiwa, T.; Kawauchi, Y.; Moriyoshi, R.; Shino, H.; Suzuki, T.; Ichikawa, S.; Kobayashi, I.; Uemura, K.; Kanazawa, A. Biocompatible Homogeneous Particle Formation via the Self-Complexation of Chitosan with Oleic Acid and Its Application as an Encapsulation Material for a Water-Insoluble Compound. Colloids Surf. A 2021, 624, 126808. DOI: 10.1016/j.colsurfa.2021.126808.
  • Poletto, F. S.; Beck, R. C.; Guterres, S. S.; Pohlmann, A. R. Polymeric Nanocapsules: Concepts and Applications. In: Beck, R. C., Guterres, S. S., Pohlmann, A., et al. editors. Nanocosmet. Nanomed. Berlin, Heidelberg: Springer, 2011, 49–68. DOI: 10.1007/978-3-642-19792-5_3.
  • Hu, K.; McClements, D. J. Fabrication of Biopolymer Nanoparticles by Antisolvent Precipitation and Electrostatic Deposition: Zein-Alginate Core/Shell Nanoparticles. Food Hydrocoll. 2015, 44, 101–108. DOI: 10.1016/j.foodhyd.2014.09.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.