92
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Study on formation characteristics of carbon dioxide hydrate in modified carbon microtube system

, , , , , , , & show all
Pages 1151-1164 | Received 05 Dec 2022, Accepted 07 Apr 2023, Published online: 07 May 2023

References

  • Zhang, X.; Wang, J.; Yang, H.; Li, J.; Li, Y.; Wu, Q. Formation and Storage Characteristics of CO2 Hydrate in Porous Media: Effect of Liquefaction Amount on the Formation Rate, Accumulation Amount. Int. J. Appl. Thermal Eng. 2022, 214, 118747. DOI: 10.1016/j.applthermaleng.2022.118747.
  • Wilberforce, T.; Olabi, A. G.; Sayed, E. T.; Elsaid, K.; Abdelkareem, M. A. Progress in Carbon Capture Technologies. Sci. Total Environ. 2021, 761, 143203. DOI: 10.1016/j.scitotenv.2020.143203.
  • Zheng, J.; Chong, Z. R.; Qureshi, M. F.; Linga, P. Carbon Dioxide Sequestration via Gas Hydrates: A Potential Pathway toward Decarbonization. Energy Fuels 2020, 34, 10529–10546. DOI: 10.1021/acs.energyfuels.0c02309.
  • Cai, Y.; Chen, Y.; Qijie, L.; Li, L.; Huang, H.; Wang, S.; Wang, W. CO2 Hydrate Formation Promoted by a Natural Amino Acid L-Methionine for Possible Application to CO2 Capture and Storage. Energy Technol. 2017, 5, 1195–1199. DOI: 10.1002/ente.201600731.
  • Misyura, S. Y.; Donskoy, I. G. Ways to Improve the Efficiency of Carbon Dioxide Utilization and Gas Hydrate Storage at Low Temperatures. Int. J. CO2 Utiliz. 2019, 34, 313–324. DOI: 10.1016/j.jcou.2019.07.010.
  • Zhang, W.; Li, H.-Y.; Xu, C.-G.; Huang, Z.-Y.; Li, X.-S. Research Progress on the Effects of Nanoparticles on Gas Hydrate Formation. RSC Adv. 2022, 12, 20227–20238. DOI: 10.1039/d2ra03376c.
  • Koh, C. A.; Sum, A. K.; Sloan, E. D. State of the Art: Natural Gas Hydrates as a Natural Resource. Int. J. Nat. Gas Sci. Eng. 2012, 8, 132–138. DOI: 10.1016/j.jngse.2012.01.005.
  • Li, S.; Wang, J.; Lv, X.; Ge, K.; Jiang, Z.; Li, Y. Experimental Measurement and Thermodynamic Modeling of Methane Hydrate Phase Equilibria in the Presence of Chloride Salts. Int. J. Chem. Eng. J. 2020, 395, 125126. DOI: 10.1016/j.cej.2020.125126.
  • Qin, Y.; Shang, L.; Song, R.; Zhou, L.; Lv, Z. Progress in Research on Dispersants in Gas Hydrate Control Technology. Int. J. Dispers. Sci. Technol. 2021, 42, 1–16. DOI: 10.1080/01932691.2021.2022492.
  • Makogon, Y. F.; Holditch, S. A.; Makogon, T. Y. Natural Gas-Hydrates—A Potential Energy Source for the 21st Century. Int. J. Petrol. Sci. Eng. 2007, 56, 14–31. DOI: 10.1016/j.petrol.2005.10.009.
  • Song, Y.-M.; Liang, R.-Q.; Wang, F.; Shi, J.-H.; Zhang, D.-B.; Yang, L. Enhancement of Clathrate Hydrate Formation Kinetics Using Carbon-Based Material Promotion. Front. Chem. 2020, 8, 464. DOI: 10.3389/fchem.2020.00464.
  • Park, S.-S.; Lee, S.-B.; Kim, N.-J. Effect of Multi-Walled Carbon Nanotubes on Methane Hydrate Formation. Int. J. Ind. Eng. Chem. 2010, 16, 551–555. DOI: 10.1016/j.jiec.2010.03.023.
  • He, Z.; Mi, F.; Ning, F. Molecular Insights into CO2 Hydrate Formation in the Presence of Hydrophilic and Hydrophobic Solid Surfaces. Int. J. Energy 2021, 234, 121260. DOI: 10.1016/j.energy.2021.121260.
  • He, Z.; Gupta, K. M.; Linga, P.; Jiang, J. Molecular Insights into the Nucleation and Growth of CH4 and CO2 Mixed Hydrates from Microsecond Simulations. Int. J. Phys. Chem. C 2016, 12025225–12025236. DOI:10.1021/ACS.JPCC.6B07780.
  • He, Z.; Linga, P.; Jiang, J. What Are the Key Factors Governing the Nucleation of CO2 Hydrate? Phys. Chem. Chem. Phys. 2017, 19, 15657–15661. DOI: 10.1039/c7cp01350g.
  • Zhao, J.; Liu, Y.-Z.; Yang, L.; Zhang, L.; Song, Y. Organics-Coated Nanoclays Further Promote Hydrate Formation Kinetics. J. Phys. Chem. Lett. 2021, 12, 3464–3467. DOI: 10.1021/acs.jpclett.1c00010.
  • Zhong, Y.; Rogers, R. E. Surfactant Effects on Gas Hydrate Formation. Int. J. Chem. Eng. Sci. 2000, 55, 4175–4187. DOI: 10.1016/S0009-2509(00)00072-5.
  • Reilly, R. M. Carbon Nanotubes: Potential Benefits and Risks of Nanotechnology in Nuclear Medicine. J. Nucl. Med. 2007, 48, 1039–1042. DOI: 10.2967/jnumed.107.041723.
  • Rezaei, E.; Manteghian, M.; Tamaddondar, M. Kinetic Study of Ethylene Hydrate Formation in Presence of Graphene Oxide and Sodium Dodecyl Sulfate. Int. J. Petrol. Sci. Eng. 2016, 147, 857–863. DOI: 10.1016/j.petrol.2016.10.008.
  • Lu, Y.-Y.; Ge, B.-B.; Zhong, D.-L. Investigation of Using Graphite Nanofluids to Promote Methane Hydrate Formation: Application to Solidified Natural Gas Storage. Int. J. Energy 2020, 199, 117424. DOI: 10.1016/j.energy.2020.117424.
  • Zhou, S.-D.; Yu, Y.-S.; Zhao, M.-M.; Wang, S.-L.; Zhang, G.-Z. Effect of Graphite Nanoparticles on Promoting CO2 Hydrate Formation. Energy Fuels 2014, 28, 4694–4698. DOI: 10.1021/ef5000886.
  • Yu, Y.-S.; Xu, C.-G.; Li, X.-S. Evaluation of CO2 Hydrate Formation from Mixture of Graphite Nanoparticle and Sodium Dodecyl Benzene Sulfonate. Int. J. Ind. Eng. Chem. 2018, 59, 64–69. DOI: 10.1016/j.jiec.2017.10.007.
  • Pasieka, J.; Coulombe, S.; Servio, P. Investigating the Effects of Hydrophobic and Hydrophilic Multi-Wall Carbon Nanotubes on Methane Hydrate Growth Kinetics. Int. J. Chem. Eng. Sci. 2013, 104, 998–1002. DOI: 10.1016/j.ces.2013.10.037.
  • Köhler, M. H.; Bordin, J. R.; Da Silva, L. B.; Barbosa, M. C. Structure and Dynamics of Water inside Hydrophobic and Hydrophilic Nanotubes. Int. J. Phys. A: Stat. Mech. Appl. 2018, 490, 331–337. DOI: 10.1016/j.physa.2017.08.030.
  • Jiang, L.; Gao, L. Modified Carbon Nanotubes: An Effective Way to Selective Attachment of Gold Nanoparticles. Int. J. Carbon 2003, 41, 2923–2929. DOI: 10.1016/S0008-6223(03)00339-7.
  • Kim, S. W.; Kim, T.; Kim, Y. S.; Choi, H. S.; Lim, H. J.; Yang, S. J.; Park, C. R. Surface Modifications for the Effective Dispersion of Carbon Nanotubes in Solvents and Polymers. Int. J. Carbon 2012, 50, 3–33. DOI: 10.1016/j.carbon.2011.08.011.
  • Liu, N.; Chen, L.; Liu, C.; Yang, L.; Liu, D. Experimental Study of Carbon Dioxide Hydrate Formation in the Presence of Graphene Oxide. Int. J. Energy 2020, 211, 118994. DOI: 10.1016/j.energy.2020.118994.
  • Nashed, O.; Partoon, B.; Lal, B.; Sabil, K. M.; Shariff, A. M. Investigation of Functionalized Carbon Nanotubes’ Performance on Carbon Dioxide Hydrate Formation. Int. J. Energy 2019, 174, 602–610. DOI: 10.1016/j.energy.2019.02.193.
  • Takeya, S.; Fujihisa, H.; Gotoh, Y.; Istomin, V.; Chuvilin, E.; Sakagami, H.; Hachikubo, A. Methane Clathrate Hydrates Formed within Hydrophilic and Hydrophobic Media: Kinetics of Dissociation and Distortion of Host Structure. J. Phys. Chem. C 2013, 117, 7081–7085. DOI: 10.1021/jp312297h.
  • Pasieka, J.; Jorge, L.; Coulombe, S.; Servio, P. Effects of as-Produced and Amine-Functionalized Multi-Wall Carbon Nanotubes on Carbon Dioxide Hydrate Formation. Energy Fuels 2015, 29, 5259–5266. DOI: 10.1021/acs.energyfuels.5b01036.
  • Wen, G.; Yu, H.; Huang, X. Synthesis of Carbon Microtube Buckypaper by a Gas Pressure Enhanced Chemical Vapor Deposition Method. Int. J. Carbon 2011, 49, 4067–4069. 101016/ DOI: 10.1016/j.carbon.2011.05.014.
  • N, M.; V.p, S. K.; S, S. M.; G, R.; K, V. S.; T.k, S. Carbon Nanotubes and Their properties-The Review. Int. J. Mater.ials Today: Proc. 2021, 47, 4682–4685. DOI: 10.1016/j.matpr.2021.05.543.
  • Lv, X.; Jing, S.; Gao, Q.; Ye, F.; Liu, Y.; Ma, Q.; Song, S.; Zhou, S. Study on the Kinetics of Methane Hydrate Formation in the Carbon Microtube System. Int. J. Crystal Growth 2022, 593, 126777. DOI: 10.1016/j.jcrysgro.2022.126777.
  • Burla, S. K.; Pinnelli, S. R. P. Enrichment of Gas Storage in Clathrate Hydrates by Optimizing the Molar Liquid Water–Gas Ratio. RSC . 2022, 12, 2074–2082. DOI: 10.1039/d1ra07585c.
  • Zhou, Y.; Zhou, L. Utility Study of Conventional Adsorption Equations for Modeling Isotherms in a Wide Range of Temperature and Pressure. Int. J. Sep. Sci. Technol. 1998, 33, 1787–1801. DOI: 10.1080/01496399808545905.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.