265
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

A comprehensive review on synthesis, characterization and adsorption behavior of agricultural waste based adsorbents for heavy metals (Cr(VI) and Cd(II)) removal from wastewater

, &
Pages 171-202 | Received 12 Dec 2022, Accepted 29 Apr 2023, Published online: 07 Jun 2023

References

  • Irawan, C.; Nata, I. F.; Lee, C. K. Removal of Pb(II) and as(V) Using Magnetic Nanoparticles Coated Montmorillonite via One-Pot Solvothermal Reaction as Adsorbent. J. Environ. Chem. Eng. 2019, 7, 103000. DOI: 10.1016/j.jece.2019.103000.
  • Vardhan, K. H.; Kumar, P. S.; Panda, R. C. A Review on Heavy Metal Pollution, Toxicity and Remedial Measures: Current Trends and Future Perspectives. J. Mol. Liq. 2019, 290, 111197. DOI: 10.1016/j.molliq.2019.111197.
  • Premachandra, J. K.; Manoj, B. S.; Aberathne, S. N. P. P. G. P. E.; Warnapura, L. H. P. 2017; Removal of Lead from Synthetic Wastewater Using Chemically Modified Jackfruit Leaves. In 3rd International Moratuwa Engineering Research Conference, MERCon 2017; 29–33. DOI: 10.1109/MERCon.2017.7980451.
  • Motaghi, H.; Arabkhani, P.; Parvinnia, M.; Javadian, H.; Asfaram, A. Synthesis of a Highly Porous Three-Dimensional PVA/GO/ZIF-67 Cryogel for the Simultaneous Treatment of Water Contaminated with Cadmium(Ii) and Lead(Ii) Heavy Metal Ions. New J. Chem. 2022, 46, 4449–4461. DOI: 10.1039/D1NJ05418J.
  • Abhinaya, M.; Parthiban, R.; Kumar, P. S.; Vo, D. V. N. A Review on Cleaner Strategies for Extraction of Chitosan and Its Application in Toxic Pollutant Removal. Environ. Res. 2021, 196, 110996. DOI: 10.1016/j.envres.2021.110996.
  • Topare, N. S.; Wadgaonkar, V. S. A Review on Application of Low-Cost Adsorbents for Heavy Metals Removal from Wastewater. Mater. Today Proc. 2023, 77, 8–18. DOI: 10.1016/j.matpr.2022.08.450.
  • Hasan, S. H.; Singh, K. K.; Prakash, O.; Talat, M.; Ho, Y. S. Removal of Cr(VI) from Aqueous Solutions Using Agricultural Waste “Maize Bran”. J. Hazard. Mater. 2008, 152, 356–365. DOI: 10.1016/j.jhazmat.2007.07.006.
  • Khelaifia, F. Z.; Hazourli, S.; Nouacer, S.; Rahima, H.; Ziati, M. Valorization of Raw Biomaterial Waste-Date Stones-for Cr (VI) Adsorption in Aqueous Solution: Thermodynamics, Kinetics and Regeneration Studies. Int. Biodeterior. Biodegrad. 2016, 114, 76–86. DOI: 10.1016/j.ibiod.2016.06.002.
  • Altun, T.; Pehlivan, E. Removal of Cr(VI) from Aqueous Solutions by Modified Walnut Shells. Food Chem. 2012, 132, 693–700. DOI: 10.1016/j.foodchem.2011.10.099.
  • Jahangiri, K.; Yousefi, N.; Ghadiri, S. K.; Fekri, R.; Bagheri, A.; Talebi,.; S.; S. Enhancement Adsorption of Hexavalent Chromium onto Modified Fly Ash from Aqueous Solution; Optimization; Isotherm, Kinetic and Thermodynamic Study. J. Dispers. Sci. Technol. 2019, 40, 1147–1158. DOI: 10.1080/01932691.2018.1496841.
  • Chen, S.; Yue, Q.; Gao, B.; Xu, X. Equilibrium and Kinetic Adsorption Study of the Adsorptive Removal of Cr(VI) Using Modified Wheat Residue. J. Colloid Interface Sci. 2010, 349, 256–264. DOI: 10.1016/j.jcis.2010.05.057.
  • Huang, J.; Huen, M. S. Y.; Kim, H.; Leung, C. C. Y.; Glover, J. N. M.; Yu, X.; Chen, J. RAD18 Transmits DNA Damage Signalling to Elicit Homologous Recombination Repair. Nat. Cell Biol. 2009, 11, 592–603. DOI: 10.1038/ncb1865.
  • Zhao, Y.; Qi, W.; Chen, G.; Ji, M.; Zhang, Z. Behavior of Cr(VI) Removal from Wastewater by Adsorption onto HCl Activated Akadama Clay. J. Taiwan Inst. Chem. Eng. 2015, 50, 190–197. DOI: 10.1016/j.jtice.2014.12.016.
  • Cui, J.; Li, X.; Ma, S.; Wei, W. Cellulose Bridged Carbonate Hydroxyapatite Nanoparticles as Novel Adsorbents for Efficient Cr(VI) Removal. J. Dispers. Sci. Technol. 2022, 0, 1–12. DOI: 10.1080/01932691.2022.2122496.
  • Kaya, K.; Pehlivan, E.; Schmidt, C.; Bahadir, M. Use of Modified Wheat Bran for the Removal of Chromium(VI) from Aqueous Solutions. Food Chem. 2014, 158, 112–117. DOI: 10.1016/j.foodchem.2014.02.107.
  • U.S. Geological Survey. Mineral Commodity Summaries. 2022; 2022.
  • Kyzas, G. Z.; Siafaka, P. I.; Lambropoulou, D. A.; Lazaridis, N. K.; Bikiaris,.; D.; N. Poly(Itaconic Acid)-Grafted Chitosan Adsorbents with Different Cross-Linking for Pb(II) and Cd(II) Uptake. Langmuir 2014, 30, 120–131. DOI: 10.1021/la402778x.
  • Asuquo, E. D.; Martin, A. D. Sorption of Cadmium (II) Ion from Aqueous Solution onto Sweet Potato (Ipomoea Batatas L.) Peel Adsorbent: Characterisation, Kinetic and Isotherm Studies. J. Environ. Chem. Eng. 2016, 4, 4207–4228. DOI: 10.1016/j.jece.2016.09.024.
  • Boudrahem, F.; Soualah, A.; Aissani-Benissad, F. Pb(II) and Cd(II) Removal from Aqueous Solutions Using Activated Carbon Developed from Coffee Residue Activated with Phosphoric Acid and Zinc Chloride. J. Chem. Eng. Data 2011, 56, 1946–1955. DOI: 10.1021/je1009569.
  • Shen, X.; Gao, X.; Wei, W.; Zhang, Y.; Zhang, Y.; Ma, L.; Liu, H.; Han, R.; Lin, J. Combined Performance of Hydroxyapatite Adsorption and Magnetic Separation Processes for Cd(II) Removal from Aqueous Solution. J. Dispers. Sci. Technol. 2021, 42, 664–676. DOI: 10.1080/01932691.2019.1703734.
  • Carolin, C. F.; Kumar, P. S.; Saravanan, A.; Joshiba, G. J.; Naushad, M. Efficient Techniques for the Removal of Toxic Heavy Metals from Aquatic Environment: A Review. J. Environ. Chem. Eng. 2017, 5, 2782–2799. DOI: 10.1016/j.jece.2017.05.029.
  • Mahmoud, M.; E.; Abdou, A. E. H.; Ahmed, S. B. Conversion of Waste Styrofoam into Engineered Adsorbents for Efficient Removal of Cadmium, Lead and Mercury from Water. ACS Sustainable Chem. Eng. 2016, 4, 819–827. DOI: 10.1021/acssuschemeng.5b01149.
  • Joshi, N. C.; Rawat, B. S.; Semwal, P.; Kumar, N. Effective Removal of Highly Toxic Pb2+ and Cd2+ Ions Using Reduced Graphene Oxide, Polythiophene, and Silica-Based Nanocomposite. J. Dispers. Sci. Technol. 2022, 0, 2127752, . DOI: 10.1080/01932691.2022.2127752.
  • Deng, J. H.; Zhang, X. R.; Zeng, G. M.; Gong, J. L.; Niu, Q. Y.; Liang, J. Simultaneous Removal of Cd(II) and Ionic Dyes from Aqueous Solution Using Magnetic Graphene Oxide Nanocomposite as an Adsorbent. Chem. Eng. J. 2013, 226, 189–200. DOI: 10.1016/j.cej.2013.04.045.
  • Alok, S.; Jain, S. K.; Verma, A.; Kumar, M.; Sabharwal, M. Pathophysiology of Kidney, Gallbladder and Urinary Stones Treatment with Herbal and Allopathic Medicine: A Review. Asian Pacific J. Trop. Dis. 2013, 3, 496–504. DOI: 10.1016/S2222-1808(13)60107-3.
  • Akhdhar, A.; Yakout, A. A. Enhanced Simultaneous Sequestration of Cd(II) and Pb(II) Ions from Industrial Wastewater Samples Based on Poly-(2-Aminothiophenol) Functionalized Graphene Oxide. J. Dispers. Sci. Technol. 2022, 43, 1–11. DOI: 10.1080/01932691.2022.2122495.
  • Koju, N. K.; Song, X.; Wang, Q.; Hu, Z.; Colombo, C. Cadmium Removal from Simulated Groundwater Using Alumina Nanoparticles: Behaviors and Mechanisms. Environ. Pollut. 2018, 240, 255–266. DOI: 10.1016/j.envpol.2018.04.107.
  • Tran, D. T.; Vu, D. T.; Le, M. C. Adsorptive Removal of Heavy Metals from Water Using Thermally Treated Laterite: An Approach for Production of Drinking Water from Rain Water. J. Dispers. Sci. Technol. 2023, 0, 1–13. DOI: 10.1080/01932691.2023.2165094.
  • Akhter, F.; Zoppas, F. M.; Soomro, M.; Jatoi, A.; S.; Noureen, F.; Akhtar, M. N.; Mehreen, F. Carbon-Based Sorbets for Heavy Metal Removal from Aqueous Solution, Discrepancies, and Future Prospects: A State-of-the-Art Review. Biomass Conv. Bioref. 2021, 8, 1-17. DOI: 10.1007/s13399-021-01866-3.
  • Afroze, S.; Sen, T. K. A Review on Heavy Metal Ions and Dye Adsorption from Water by Agricultural Solid Waste Adsorbents. Water Air Soil Pollut. 2018, 229, 225. DOI: 10.1007/s11270-018-3869-z.
  • Crini, G.; Lichtfouse, E. Advantages and Disadvantages of Techniques Used for Wastewater Treatment. Environ. Chem. Lett. 2019, 17, 145–155. DOI: 10.1007/s10311-018-0785-9.
  • Fu, F.; Wang, Q. Removal of Heavy Metal Ions from Wastewaters: A Review. J. Environ. Manage. 2011, 92, 407–418. DOI: 10.1016/j.jenvman.2010.11.011.
  • Bolisetty, S.; Peydayesh, M.; Mezzenga, R. Sustainable Technologies for Water Purification from Heavy Metals: Review and Analysis. Chem. Soc. Rev. 2019, 48, 463–487. DOI: 10.1039/c8cs00493e.
  • Bashir, A.; Malik, L. A.; Ahad, S.; Manzoor, T.; Bhat, M. A.; Dar, G. N.; Pandith, A. H. Removal of Heavy Metal Ions from Aqueous System by Ion-Exchange and Biosorption Methods. Environ. Chem. Lett. 2019, 17, 729–754. DOI: 10.1007/s10311-018-00828-y.
  • Chai, W. S.; Cheun, J. Y.; Kumar, P. S.; Mubashir, M.; Majeed, Z.; Banat, F.; Ho, S. H.; Show, P. L. A Review on Conventional and Novel Materials towards Heavy Metal Adsorption in Wastewater Treatment Application. J. Clean. Prod. 2021, 296, 126589. DOI: 10.1016/j.jclepro.2021.126589.
  • Kumar, V.; Shahi, S. K.; Singh, S. Bioremediation: An Eco-Sustainable Approach for Restoration of Contaminated Sites. In Microbial Bioprospecting for Sustainable Development; Singh, J., Sharma, D., Kumar, G., Sharma, N. R., Eds.; Springer Singapore: Singapore, 2018, pp 115–136 DOI: 10.1007/978-981-13-0053-0_6.
  • Pratush, A.; Kumar, A.; Hu, Z. Adverse Effect of Heavy Metals (as, Pb, Hg, and Cr) on Health and Their Bioremediation Strategies: A Review. Int. Microbiol. 2018, 21, 97–106. DOI: 10.1007/s10123-018-0012-3.
  • Muthusaravanan, S.; Sivarajasekar, N.; Vivek, J. S.; Paramasivan, T.; Naushad, M.; Prakashmaran, J.; Gayathri, V.; Al-Duaij, O. K. Phytoremediation of Heavy Metals: Mechanisms, Methods and Enhancements. Environ. Chem. Lett. 2018, 16, 1339–1359. DOI: 10.1007/s10311-018-0762-3.
  • Mustafa, H. M.; Hayder, G. Recent Studies on Applications of Aquatic Weed Plants in Phytoremediation of Wastewater: A Review Article. Ain Shams Eng. J. 2021, 12, 355–365. DOI: 10.1016/j.asej.2020.05.009.
  • Liu, Y.; Yang, Q.; Feng, R.; Xu, W.; Yan, L.; Du, B.; Wei, Q.; Wei, D. A Magnetic Activated Sludge for Cu(Ii) and Cd(Ii) Removal: Adsorption Performance and Mechanism Studies. New J. Chem. 2019, 43, 18062–18071. DOI: 10.1039/C9NJ04198B.
  • Luo, T.; Tian, X.; Yang, C.; Luo, W.; Nie, Y.; Wang, Y. Polyethylenimine-Functionalized Corn Bract, an Agricultural Waste Material, for Efficient Removal and Recovery of Cr(VI) from Aqueous Solution. J. Agric. Food Chem. 2017, 65, 7153–7158. DOI: 10.1021/acs.jafc.7b02699.
  • Wasim, A. A.; Khan, M. N. Physicochemical Effects of Alkali Treatment on Acid-Activated Pine Shell for the Removal of Lead Ions from Aqueous Medium. J. Dispers. Sci. Techno.l 2017, 38, 1092–1102. DOI: 10.1080/01932691.2016.1225506.
  • Isiuku, B. O.; Okonkwo, P. C.; Emeagwara, C. D. Batch Adsorption Isotherm Models Applied in Single and Multicomponent Adsorption Systems–a Review. J. Dispers. Sci. Technol. 2021, 42, 1879–1897. DOI: 10.1080/01932691.2021.1964988.
  • Tang, J.; Mu, B.; Zheng, M.; Wang, A. One-Step Calcination of the Spent Bleaching Earth for the Efficient Removal of Heavy Metal Ions. ACS Sustainable Chem. Eng. 2015, 3, 1125–1135. DOI: 10.1021/acssuschemeng.5b00040.
  • Syeda, H. I.; Yap, P. S. A Review on Three-Dimensional Cellulose-Based Aerogels for the Removal of Heavy Metals from Water. Sci. Total Environ. 2022, 807, 150606. DOI: 10.1016/j.scitotenv.2021.150606.
  • Daochalermwong, A.; Chanka, N.; Songsrirote, K.; Dittanet, P.; Niamnuy, C.; Seubsai, A. Removal of Heavy Metal Ions Using Modified Celluloses Prepared from Pineapple Leaf Fiber. ACS Omega 2020, 5, 5285–5296. DOI: 10.1021/acsomega.9b04326.
  • Singh, D. K.; Kumar, V.; Mohan, S.; Hasan, S. H. Polylysine Functionalized Graphene Aerogel for the Enhanced Removal of Cr(VI) through Adsorption: Kinetic, Isotherm, and Thermodynamic Modeling of the Process. J. Chem. Eng. Data 2017, 62, 1732–1742. DOI: 10.1021/acs.jced.7b00188.
  • Sun, J.; Zhao, X.; Sun, G.; Zhao, H.; Yang, Z.; Yan, L.; Jiang, X.; Cui, Y. Highly Efficient and Rapid Pb(Ii) Removal from Acidic Wastewater Using Superhydrophilic Polystyrene Phosphate Resin. New J. Chem. 2022, 46, 16567–16575. DOI: 10.1039/D2NJ03220A.
  • Tony, M. A. Low-Cost Adsorbents for Environmental Pollution Control: A Concise Systematic Review from the Prospective of Principles, Mechanism and Their Applications. J. Dispers. Sci. Technol. 2022, 43, 1612–1633. DOI: 10.1080/01932691.2021.1878037.
  • Shahrokhi-Shahraki, R.; Benally, C.; El-Din, M. G.; Park, J. High Efficiency Removal of Heavy Metals Using Tire-Derived Activated Carbon vs Commercial Activated Carbon: Insights into the Adsorption Mechanisms. Chemosphere 2021, 264, 128455. DOI: 10.1016/j.chemosphere.2020.128455.
  • Duan, C.; Ma, T.; Wang, J.; Zhou, Y. Removal of Heavy Metals from Aqueous Solution Using Carbon-Based Adsorbents: A Review. J. Water Process Eng. 2020, 37, 101339. DOI: 10.1016/j.jwpe.2020.101339.
  • Sud, D.; Mahajan, G.; Kaur, M. P. Agricultural Waste Material as Potential Adsorbent for Sequestering Heavy Metal Ions from Aqueous Solutions - A Review. Bioresour. Technol. 2008, 99, 6017–6027. DOI: 10.1016/j.biortech.2007.11.064.
  • Júnior, O. K.; Gurgel, L. V. A.; de Freitas, R.; P.; Gil, L. F. Adsorption of Cu(II), Cd(II), and Pb(II) from Aqueous Single Metal Solutions by Mercerized Cellulose and Mercerized Sugarcane Bagasse Chemically Modified with EDTA Dianhydride (EDTAD). Carbohydr. Polym. 2009, 77, 643–650. DOI: 10.1016/j.carbpol.2009.02.016.
  • Munagapati, V. S.; Yarramuthi, V.; Nadavala, S. K.; Alla, S. R.; Abburi, K. Biosorption of Cu(II), Cd(II) and Pb(II) by Acacia Leucocephala Bark Powder: Kinetics, Equilibrium and Thermodynamics. Chem. Eng. J. 2010, 157, 357–365. DOI: 10.1016/j.cej.2009.11.015.
  • Ramana, D. K. V.; Jamuna, K.; Satyanarayana, B.; Venkateswarlu, B.; Rao, M. M.; Seshaiah, K. Removal of Heavy Metals from Aqueous Solutions Using Activated Carbon Prepared from Cicer Arietinum. Toxicol. Environ. Chem. 2010, 92, 1447–1460. DOI: 10.1080/02772241003614312.
  • Rao, R. A. K.; Rehman, F. Adsorption Studies on Fruits of Gular (Ficus Glomerata): Removal of Cr(VI) from Synthetic Wastewater. J. Hazard. Mater. 2010, 181, 405–412. DOI: 10.1016/j.jhazmat.2010.05.025.
  • Moussavi, G.; Barikbin, B. Biosorption of Chromium(VI) from Industrial Wastewater onto Pistachio Hull Waste Biomass. Chem. Eng. J. 2010, 162, 893–900. DOI: 10.1016/j.cej.2010.06.032.
  • Feng, N.; Guo, X.; Liang, S.; Zhu, Y.; Liu, J. Biosorption of Heavy Metals from Aqueous Solutions by Chemically Modified Orange Peel. J. Hazard. Mater. 2011, 185, 49–54. DOI: 10.1016/j.jhazmat.2010.08.114.
  • Chen, S.; Yue, Q.; Gao, B.; Li, Q.; Xu, X. Removal of Cr(VI) from Aqueous Solution Using Modified Corn Stalks: Characteristic, Equilibrium, Kinetic and Thermodynamic Study. Chem. Eng. J. 2011, 168, 909–917. DOI: 10.1016/j.cej.2011.01.063.
  • Bose, A.; Kavita, B.; Keharia, H. The Suitability of Jatropha Seed Press Cake as a Biosorbent for Removal of Hexavalent Chromium from Aqueous Solutions. Bioremediat. J. 2011, 15, 218–229. DOI: 10.1080/10889868.2011.624139.
  • Lasheen, M. R.; Ammar, N. S.; Ibrahim, H. S. Adsorption/Desorption of Cd(II), Cu(II) and Pb(II) Using Chemically Modified Orange Peel: Equilibrium and Kinetic Studies. Solid State Sci. 2012, 14, 202–210. DOI: 10.1016/j.solidstatesciences.2011.11.029.
  • Suksabye, P.; Thiravetyan, P. Cr(VI) Adsorption from Electroplating Plating Wastewater by Chemically Modified Coir Pith. J. Environ. Manage. 2012, 102, 1–8. DOI: 10.1016/j.jenvman.2011.10.020.
  • Gupta, V. K.; Pathania, D.; Agarwal, S.; Sharma, S. Removal of Cr(VI) onto Ficus Carica Biosorbent from Water. Environ. Sci. Pollut. Res. Int. 2013, 20, 2632–2644. DOI: 10.1007/s11356-012-1176-6.
  • Barka, N.; Ouzaouit, K.; Abdennouri, M.; Makhfouk, M. E. Dried Prickly Pear Cactus (Opuntia Ficus Indica) Cladodes as a Low-Cost and Eco-Friendly Biosorbent for Dyes Removal from Aqueous Solutions. J. Taiwan Inst. Chem. Eng. 2013, 44, 52–60. DOI: 10.1016/j.jtice.2012.09.007.
  • Torab-Mostaedi, M.; Asadollahzadeh, M.; Hemmati, A.; Khosravi, A. Equilibrium, Kinetic, and Thermodynamic Studies for Biosorption of Cadmium and Nickel on Grapefruit Peel. J. Taiwan Inst. Chem. Eng. 2013, 44, 295–302. DOI: 10.1016/j.jtice.2012.11.001.
  • Saha, R.; Mukherjee, K.; Saha, I.; Ghosh, A.; Ghosh, S. K.; Saha, B. Removal of Hexavalent Chromium from Water by Adsorption on Mosambi (Citrus Limetta) Peel. Res. Chem. Intermed. 2013, 39, 2245–2257. DOI: 10.1007/s11164-012-0754-z.
  • Martins, A. E.; Pereira, M. S.; Jorgetto, A. O.; Martines, M. A. U.; Silva, R. I. V.; Saeki, M. J.; Castro, G. R. The Reactive Surface of Castor Leaf [Ricinus Communis L.] Powder as a Green Adsorbent for the Removal of Heavy Metals from Natural River Water. Appl. Surf. Sci. 2013, 276, 24–30. DOI: 10.1016/j.apsusc.2013.02.096.
  • Mandina, S. Removal of Chromium (VI) from Aqueous Solution Using Chemically Modified Orange (Citrus Cinensis) Peel. IOSR-JAC 2013, 6, 66–75. DOI: 10.9790/5736-0626675.
  • Jain, M.; Garg, V. K.; Kadirvelu, K. Chromium Removal from Aqueous System and Industrial Wastewater by Agricultural Wastes. Bioremediat. J. 2013, 17, 30–39. DOI: 10.1080/10889868.2012.731450.
  • Saha, R.; Saha, B. Removal of Hexavalent Chromium from Contaminated Water by Adsorption Using Mango Leaves (Mangifera Indica). Desalin. Water Treat. 2014, 52, 1928–1936. DOI: 10.1080/19443994.2013.804458.
  • Gupta, V. K.; Pathania, D.; Sharma, S.; Agarwal, S.; Singh, P. Remediation of Noxious Chromium (VI) Utilizing Acrylic Acid Grafted Lignocellulosic Adsorbent. J. Mol. Liq. 2013, 177, 343–352. DOI: 10.1016/j.molliq.2012.10.017.
  • Schwantes, D.; Gonçalves, A. C.; Coelho, G. F.; Campagnolo, M. A.; Dragunski, D. C.; Tarley, C. R. T.; Miola, A. J.; Leismann, E. A. V. Chemical Modifications of Cassava Peel as Adsorbent Material for Metals Ions from Wastewater. J. Chem. 2016, 2016, 1–15. DOI: 10.1155/2016/3694174.
  • Hossain, M. A.; Ngo, H. H.; Guo, W. S.; Nguyen, T. V.; Vigneswaran, S. Performance of Cabbage and Cauliflower Wastes for Heavy Metals Removal. Desalin. Water Treat. 2014, 52, 844–860. DOI: 10.1080/19443994.2013.826322.
  • Huang, K.; Xiu, Y.; Zhu, H. Removal of Heavy Metal Ions from Aqueous Solution by Chemically Modified Mangosteen Pericarp. Desalin. Water Treat. 2014, 52, 7108–7116. DOI: 10.1080/19443994.2013.838522.
  • Bhaumik, M.; Choi, H. J.; Seopela, M. P.; McCrindle, R. I.; Maity, A. Highly Effective Removal of Toxic Cr(VI) from Wastewater Using Sulfuric Acid-Modified Avocado Seed. Ind. Eng. Chem. Res. 2014, 53, 1214–1224. DOI: 10.1021/ie402627d.
  • Yadav, S. K.; Sinha, S.; Singh, D. K. Chromium(VI) Removal from Aqueous Solution and Industrial Wastewater by Modified Date Palm Trunk. Environ. Prog. Sustainable Energy 2015, 34, 452–460. DOI: 10.1002/ep.12014.
  • Yang, J.; Yu, M.; Chen, W. Adsorption of Hexavalent Chromium from Aqueous Solution by Activated Carbon Prepared from Longan Seed: Kinetics, Equilibrium and Thermodynamics. J. Ind. Eng. Chem. 2015, 21, 414–422. DOI: 10.1016/j.jiec.2014.02.054.
  • Lo, S. F.; Wang, S. Y.; Tsai, M. J.; Lin, L. D. Adsorption Capacity and Removal Efficiency of Heavy Metal Ions by Moso and Ma Bamboo Activated Carbons. Chem. Eng. Res. Des. 2012, 90, 1397–1406. DOI: 10.1016/j.cherd.2011.11.020.
  • Aravind, J.; Kanmani, P.; Sudha, G.; Balan, R. Optimization of Chromium(VI) Biosorption Using Gooseberry Seeds by Response Surface Methodology. Glob. J. Environ. Sci. Manag. 2016, 2, 61–68. DOI: 10.7508/gjesm.2016.01.007.
  • Kv, B.; Bm, N.; Rs, R. Adsorption of Cr(VI) from Aqueous Solution onto a Mesoporous Carbonaceous Material Prepared from Naturally Occurring Pongamia Pinnata Seeds. J. Environ. Anal. Toxicol. 2015, 05, 1–7. DOI: 10.4172/2161-0525.1000330.
  • Qi, W.; Zhao, Y.; Zheng, X.; Ji, M.; Zhang, Z. Adsorption Behavior and Mechanism of Cr(VI) Using Sakura Waste from Aqueous Solution. Appl. Surf. Sci. 2016, 360, 470–476. DOI: 10.1016/j.apsusc.2015.10.088.
  • Altun, T.; Parlayıcı, Ş.; Pehlivan, E. Hexavalent Chromium Removal Using Agricultural Waste “Rye Husk. Desalin. Water Treat. 2016, 57, 17748–17756. DOI: 10.1080/19443994.2015.1085914.
  • Abedi, S.; Zavvar Mousavi, H.; Asghari, A. Investigation of Heavy Metal Ions Adsorption by Magnetically Modified Aloe Vera Leaves Ash Based on Equilibrium, Kinetic and Thermodynamic Studies. Desalin. Water Treat. 2016, 57, 13747–13759. DOI: 10.1080/19443994.2015.1060536.
  • Rai, M. K.; Shahi, G.; Meena, V.; Meena, R.; Chakraborty, S.; Singh, R. S.; Rai, B. N. Removal of Hexavalent Chromium Cr (VI) Using Activated Carbon Prepared from Mango Kernel Activated with H3PO4. Resour. Technol. 2016, 2, S63–S70. DOI: 10.1016/j.reffit.2016.11.011.
  • Kuppusamy, S.; Thavamani, P.; Megharaj, M.; Venkateswarlu, K.; Lee, Y. B.; Naidu, R. Oak (Quercus Robur) Acorn Peel as a Low-Cost Adsorbent for Hexavalent Chromium Removal from Aquatic Ecosystems and Industrial Effluents. Water Air Soil Pollut. 2016, 227, 62. DOI: 10.1007/s11270-016-2760-z.
  • Li, Y.; Liu, J.; Yuan, Q.; Tang, H.; Yu, F.; Lv, X. A Green Adsorbent Derived from Banana Peel for Highly Effective Removal of Heavy Metal Ions from Water. RSC Adv. 2016, 6, 45041–45048. DOI: 10.1039/C6RA07460J.
  • Nasseh, N.; Taghavi, L.; Barikbin, B.; Harifi-Mood, A. R. The Removal of Cr(VI) from Aqueous Solution by Almond Green Hull Waste Material: Kinetic and Equilibrium Studies. J. Water Reuse Desalin. 2017, 7, 449–460. DOI: 10.2166/wrd.2016.047.
  • Yadav, S. K.; Ak, D. Efficient Removal of Cr(VI) from Aqueous Solution onto Palm Trunk Charcoal: Kinetic and Equilibrium Studies. Chem. Sci. J. 2016, 7, 1–7. DOI: 10.4172/2150-3494.1000114.
  • Pap, S.; Šolević Knudsen, T.; Radonić, J.; Maletić, S.; Igić, S. M.; Turk Sekulić, M. Utilization of Fruit Processing Industry Waste as Green Activated Carbon for the Treatment of Heavy Metals and Chlorophenols Contaminated Water. J. Clean. Prod. 2017, 162, 958–972. DOI: 10.1016/j.jclepro.2017.06.083.
  • Mondal, N. K.; Samanta, A.; Chakraborty, S.; Shaikh, W. A. Enhanced Chromium(VI) Removal Using Banana Peel Dust: Isotherms, Kinetics and Thermodynamics Study. Sustain. Water Resour. Manag. 2018, 4, 489–497. DOI: 10.1007/s40899-017-0130-7.
  • Deshmukh, P. D.; Khadse, G. K.; Shinde, V. M.; Labhasetwar, P. Cadmium Removal from Aqueous Solutions Using Dried Banana Peels as an Adsorbent: Kinetics and Equilibrium Modeling. J. Bioremediat. Biodegrad. 2017, 08, 395. DOI: 10.4172/2155-6199.1000395.
  • Berihun, D. Removal of Chromium from Industrial Wastewater by Adsorption Using Coffee Husk. J. Mater. Sci. Eng. 2017, 06, 1–6. DOI: 10.4172/2169-0022.1000331.
  • Souza, I. P. A. F.; Cazetta, A. L.; Pezoti, O.; Almeida, V. C. Preparation of Biosorbents from the Jatoba (HymenaeaCourbaril) Fruit Shell for Removal of Pb(II) and Cd(II) from Aqueous Solution. Environ. Monit. Assess. 2017, 189, 632. DOI: 10.1007/s10661-017-6330-7.
  • Doke, K. M.; Khan, E. M. Equilibrium, Kinetic and Diffusion Mechanism of Cr(VI) Adsorption onto Activated Carbon Derived from Wood Apple Shell. Arab. J. Chem. 2017, 10, S252–S260. DOI: 10.1016/j.arabjc.2012.07.031.
  • Coelho, G. F.; Gonçalves, A. C.; Schwantes, D.; Rodríguez, E. Á.; Tarley, C. R. T.; Dragunski, D.; Conradi Junior, E. Removal of Cd(II), Pb(II) and Cr(III) from Water Using Modified Residues of Anacardium Occidentale L. Appl. Water. Sci. 2018, 8, 96. DOI: 10.1007/s13201-018-0724-8.
  • Schwantes, D.; Gonçalves, A. C.; Campagnolo, M. A.; Tarley, C. R. T.; Dragunski, D. C.; de Varennes, A.; dos Santos Silva, A. K.; Conradi, E. Chemical Modifications on Pinus Bark for Adsorption of Toxic Metals. J. Environ. Chem. Eng. 2018, 6, 1271–1278. DOI: 10.1016/j.jece.2018.01.044.
  • Vaza, J. S.; Bhalerao, S. A, Environmental Sciences Research Laboratory, Department of Botany, Wilson College, Mumbai, Maharashtra, India Removal of Hexavalent Chromium by Using Citric Acid Modified Tamarind Pod Shell Powder Tamarindus Indica L. IJTSRD 2018, ume-3, 200–215. DOI: 10.31142/ijtsrd18933.
  • Qu, J.; Meng, X.; Jiang, X.; You, H.; Wang, P.; Ye, X. Enhanced Removal of Cd(II) from Water Using Sulfur-Functionalized Rice Husk: Characterization, Adsorptive Performance and Mechanism Exploration. J. Clean. Prod. 2018, 183, 880–886. DOI: 10.1016/j.jclepro.2018.02.208.
  • Lee, S. Y.; Choi, H. J. Persimmon Leaf Bio-Waste for Adsorptive Removal of Heavy Metals from Aqueous Solution. J. Environ. Manage. 2018, 209, 382–392. DOI: 10.1016/j.jenvman.2017.12.080.
  • Enniya, I.; Rghioui, L.; Jourani, A. Adsorption of Hexavalent Chromium in Aqueous Solution on Activated Carbon Prepared from Apple Peels. Sustain. Chem. Pharm. 2018, 7, 9–16. DOI: 10.1016/j.scp.2017.11.003.
  • Gogoi, S.; Chakraborty, S.; Saikia, M. D. Surface Modified Pineapple Crown Leaf for Adsorption of Cr(VI) and Cr(III) Ions from Aqueous Solution. J. Environ. Chem. Eng. 2018, 6, 2492–2501. DOI: 10.1016/j.jece.2018.03.040.
  • Banerjee, M.; Basu, R. K.; Das, S. K. Cr(VI) Adsorption by a Green Adsorbent Walnut Shell: Adsorption Studies, Regeneration Studies, Scale-up Design and Economic Feasibility. Process Saf. Environ. Prot. 2018, 116, 693–702. DOI: 10.1016/j.psep.2018.03.037.
  • Nigam, M.; Rajoriya, S.; Rani Singh, S.; Kumar, P. Adsorption of Cr (VI) Ion from Tannery Wastewater on Tea Waste: Kinetics, Equilibrium and Thermodynamics Studies. J. Environ. Chem. Eng. 2019, 7, 103188. DOI: 10.1016/j.jece.2019.103188.
  • Sun, C.; Chen, T.; Huang, Q.; Wang, J.; Lu, S.; Yan, J. Enhanced Adsorption for Pb(II) and Cd(II) of Magnetic Rice Husk Biochar by KMnO4 Modification. Environ. Sci. Pollut. Res. Int. 2019, 26, 8902–8913. DOI: 10.1007/s11356-019-04321-z.
  • Gondhalekar, S. C.; Singh, S. A.; Shukla, S. R. Removal of Cd(II) Ions by Oxidized Coconut Coir. J. Nat. Fibers 2019, 16, 37–48. DOI: 10.1080/15440478.2017.1401503.
  • Suganya, E.; Saranya, N.; Patra, C.; Varghese, L. A.; Selvaraju, N. Biosorption Potential of GliricidiaSepium Leaf Powder to Sequester Hexavalent Chromium from Synthetic Aqueous Solution. J. Environ. Chem. Eng. 2019, 7, 103112. DOI: 10.1016/j.jece.2019.103112.
  • Cherdchoo, W.; Nithettham, S.; Charoenpanich, J. Removal of Cr(VI) from Synthetic Wastewater by Adsorption onto Coffee Ground and Mixed Waste Tea. Chemosphere 2019, 221, 758–767. DOI: 10.1016/j.chemosphere.2019.01.100.
  • Lan, G.; Zhang, Y.; Liu, Y.; Qiu, H.; Liu, P.; Yan, J.; Zhang, T. Modified Peach Stones by Ethylenediamine as a New Adsorbent for Removal of Cr (VI) from Wastewater. Sep. Sci. Technol. 2019, 54, 2126–2137. DOI: 10.1080/01496395.2019.1604752.
  • Parlayıcı, Ş. Modified Peach Stone Shell Powder for the Removal of Cr (VI) from Aqueous Solution: Synthesis, Kinetic, Thermodynamic, and Modeling Study. Int. J. Phytoremediation 2019, 21, 590–599. DOI: 10.1080/15226514.2018.1540541.
  • Mondal, N. K.; Basu, S.; Sen, K.; Debnath, P. Potentiality of Mosambi (Citrus Limetta) Peel Dust toward Removal of Cr(VI) from Aqueous Solution: An Optimization Study. Appl. Water Sci. 2019, 9, 116. DOI: 10.1007/s13201-019-0997-6.
  • Altun, T. Chitosan-Coated Sour Cherry Kernel Shell Beads: An Adsorbent for Removal of Cr(VI) from Acidic Solutions. J. Anal. Sci. Technol. 2019, 10, 14. DOI: 10.1186/s40543-019-0172-6.
  • Zhang, Y.; Li, M.; Li, J.; Yang, Y.; Liu, X. Surface Modified Leaves with High Efficiency for the Removal of Aqueous Cr (VI). Appl. Surf. Sci. 2019, 484, 189–196. DOI: 10.1016/j.apsusc.2019.04.088.
  • Gonçalves, A. C.; Schwantes, D.; Junior, E. C.; Zimmermann, J.; Coelho, G. F. Adsorption of Cd (II), Pb (II) and Cr (III) on Chemically Modified Euterpe Oleracea Biomass for the Remediation of Water Pollution. Acta Sci. Technol. 2020, 43, e50263. DOI: 10.4025/actascitechnol.v43i1.50263.
  • Chen, Y.; Chen, Q.; Zhao, H.; Dang, J.; Jin, R.; Zhao, W.; Li, Y. Wheat Straws and Corn Straws as Adsorbents for the Removal of Cr(VI) and Cr(III) from Aqueous Solution: Kinetics, Isotherm, and Mechanism. ACS Omega 2020, 5, 6003–6009. DOI: 10.1021/acsomega.9b04356.
  • Kumar, S.; Shahnaz, T.; Selvaraju, N.; Rajaraman, P. V. Kinetic and Thermodynamic Studies on Biosorption of Cr(VI) on Raw and Chemically Modified Datura Stramonium Fruit. Environ. Monit. Assess. 2020, 192, 248. DOI: 10.1007/s10661-020-8181-x.
  • Tho, P. T.; Van, H. T.; Nguyen, L. H.; Hoang, T. K.; Ha Tran, T. N.; Nguyen, T. T.; Hanh Nguyen, T. B.; Nguyen, V. Q.; Le Sy, H.; Thai, V. N.; et al. Enhanced Simultaneous Adsorption of as(Iii), Cd(Ii), Pb(Ii) and Cr(vi) Ions from Aqueous Solution Using Cassava Root Husk-Derived Biochar Loaded with ZnO Nanoparticles. RSC Adv. 2021, 11, 18881–18897. DOI: 10.1039/d1ra01599k.
  • Zhao, J.; Yu, L.; Zhou, F.; Ma, H.; Yang, K.; Wu, G. Synthesis and Characterization of Activated Carbon from Sugar Beet Residue for the Adsorption of Hexavalent Chromium in Aqueous Solutions. RSC Adv. 2021, 11, 8025–8032. DOI: 10.1039/d0ra09644j.
  • Saravanan, A.; Kumar, P. S.; Vo, D. V. N.; Swetha, S.; Ngueagni, P. T.; Karishma, S.; Jeevanantham, S.; Yaashikaa, P. R. Ultrasonic Assisted Agro Waste Biomass for Rapid Removal of Cd(II) Ions from Aquatic Environment: Mechanism and Modelling Analysis. Chemosphere 2021, 271, 129484. DOI: 10.1016/j.chemosphere.2020.129484.
  • Adeyemi, A. F.; Olasunkanmi, L. O. Evaluation of the Efficiency of ZnCl2 Activated Cocoa Pod Husk Charcoal on the Removal of Cu2+, Cd2+, and Pb2+ Ions from Aqueous Solution. J. Dispers. Sci. Technol. 2022, 0, 2050253. DOI: 10.1080/01932691.2022.2050253.
  • Sahoo, S. K.; Panigrahi, G. K.; Sahu, M. K.; Arzoo, A.; Sahoo, J. K.; Sahoo, A.; Pradhan, A. K.; Dalbehera, A. Biological Synthesis of GO-MgO Nanomaterial Using Azadirachta Indica Leaf Extract: A Potential Bio-Adsorbent for Removing Cr(VI) Ions from Aqueous Media. Biochem. Eng. J. 2022, 177, (November 2021). 108272. DOI: 10.1016/j.bej.2021.108272.
  • Thangagiri, B.; Sakthivel, A.; Jeyasubramanian, K.; Seenivasan, S.; Dhaveethu Raja, J.; Yun, K. Removal of Hexavalent Chromium by Biochar Derived from Azadirachta Indica Leaves: Batch and Column Studies. Chemosphere 2022, 286, 131598. DOI: 10.1016/j.chemosphere.2021.131598.
  • Pourhakkak, P.; Taghizadeh, M.; Taghizadeh, A.; Ghaedi, M. Adsorbent. Interface Science and Technology; Elsevier, 2021; Vol. 33, pp 71–210 DOI: 10.1016/B978-0-12-818805-7.00009-6.
  • Bao, S.; Yang, W.; Wang, Y.; Yu, Y.; Sun, Y.; Li, K. PEI Grafted Amino-Functionalized Graphene Oxide Nanosheets for Ultrafast and High Selectivity Removal of Cr(VI) from Aqueous Solutions by Adsorption Combined with Reduction: Behaviors and Mechanisms. Chem. Eng. J. 2020, 399, 125762. DOI: 10.1016/j.cej.2020.125762.
  • Mondal, N. K.; Chakraborty, S. Adsorption of Cr(VI) from Aqueous Solution on Graphene Oxide (GO) Prepared from Graphite: Equilibrium, Kinetic and Thermodynamic Studies. Appl. Water Sci. 2020, 10, 1–10. DOI: 10.1007/s13201-020-1142-2.
  • Lingamdinne, L. P.; Godlaveeti, S. K.; Angaru, G. K. R.; Chang, Y. Y.; Nagireddy, R. R.; Somala, A. R.; Koduru, J. R. Highly Efficient Surface Sequestration of Pb2+ and Cr3+ from Water Using a Mn3O4 Anchored Reduced Graphene Oxide: Selective Removal of Pb2+ from Real Water. Chemosphere 2022, 299, 134457. DOI: 10.1016/j.chemosphere.2022.134457.
  • Bilgiç, A.; Çimen, A. Removal of Chromium(vi) from Polluted Wastewater by Chemical Modification of Silica Gel with 4-Acetyl-3-Hydroxyaniline. RSC Adv. 2019, 9, 37403–37414. DOI: 10.1039/c9ra05810a.
  • He, K.; Chen, Y.; Tang, Z.; Hu, Y. Removal of Heavy Metal Ions from Aqueous Solution by Zeolite Synthesized from Fly Ash. Environ. Sci. Pollut. Res. Int. 2016, 23, 2778–2788. DOI: 10.1007/s11356-015-5422-6.
  • Bogusz, A.; Oleszczuk, P.; Dobrowolski, R. Application of Laboratory Prepared and Commercially Available Biochars to Adsorption of Cadmium, Copper and Zinc Ions from Water. Bioresour. Technol. 2015, 196, 540–549. DOI: 10.1016/j.biortech.2015.08.006.
  • Saqib, N. U.; Adnan, R.; Shah, I.; Arshad, M.; Inam, M. Activated Carbon, Zeolite, and Ceramics Immobilized TiO2 Photocatalysts for the Enhanced Sequential Uptake of Dyes and Cd2+ Ions. J. Dispers. Sci. Technol. 2022, 0, 1–11. DOI: 10.1080/01932691.2022.2070497.
  • Agarwal, M.; Singh.; K.; Renu. Heavy Metal Removal from Wastewater Using Various Adsorbents: A Review. J. Water Reuse Desalin. 2017, 7, 387–419. DOI: 10.2166/wrd.2016.104.
  • Corda, N.; Kini, M. S. Recent Studies in Adsorption of Pb(II), Zn(II) and Co(II) Using Conventional and Modified Materials:A Review. Sep. Sci. Technol. 2020, 55, 2679–2698. DOI: 10.1080/01496395.2019.1652651.
  • Kwikima, M. M.; Mateso, S.; Chebude, Y. Potentials of Agricultural Wastes as the Ultimate Alternative Adsorbent for Cadmium Removal from Wastewater. A Review. Sci. Afr. 2021, 13, e00934. DOI: 10.1016/j.sciaf.2021.e00934.
  • Lim, A. P.; Aris, A. Z. A Review on Economically Adsorbents on Heavy Metals Removal in Water and Wastewater. Rev. Environ. Sci. Biotechnol. 2014, 13, 163–181. DOI: 10.1007/s11157-013-9330-2.
  • Tran, H. N.; Nguyen, H. C.; Woo, S. H.; Nguyen, T. V.; Vigneswaran, S.; Hosseini-Bandegharaei, A.; Rinklebe, J.; Kumar Sarmah, A.; Ivanets, A.; Dotto, G. L.; et al. Removal of Various Contaminants from Water by Renewable Lignocellulose-Derived Biosorbents: A Comprehensive and Critical Review. Crit. Rev. Environ. Sci. Technol. 2019, 49, 2155–2219. DOI: 10.1080/10643389.2019.1607442.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.