46
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Controllable preparation of semiconducting polymer microspheres and their application in the photocatalytic degradation of tetracycline antibiotics

, , , &
Pages 1494-1501 | Received 19 Mar 2023, Accepted 24 May 2023, Published online: 08 Jun 2023

References

  • Bettinetti, R.; Giarei, C.; Provini, A. Chemical Analysis and Sediment Toxicity Bioassays to Assess the Contamination of the River Lambro (Northern Italy). Arch. Environ. Contam. Toxicol. 2003, 45, 72–78. DOI: 10.1007/s00244-002-0126-6.
  • Wu, S.-Q.; Hu, H.-Y.; Lin, Y.; Zhang, J.-L.; Hu, Y.-H. Visible Light Photocatalytic Degradation of Tetracycline over TiO2. Chem. Eng. J. 2020, 382, 122842. DOI: 10.1016/j.cej.2019.122842.
  • Sánchez, A.-R.; Rogers, R.-S.; Sheridan, P.-J. Tetracycline and Other Tetracycline‐Derivative Staining of the Teeth and Oral Cavity. Int. J. Dermatol. 2004, 43, 709–715. DOI: 10.1111/j.1365-4632.2004.02108.x.
  • Ha, Y.-R.; Jeong, S.-J.; Jang, C.-W.; Chang, K.-S.; Kim, H.-W.; Cho, S.-H.; Lee, H.-I. The Effects of Antibiotics on the Reproductive Physiology Targeting Ovaries in the Asian Tiger Mosquito, Aedes albopictus. Entomol. Res. 2021, 51, 65–73. DOI: 10.1111/1748-5967.12462.
  • Wu, M.; Zhao, S.-F.; Tang, M.-X.; Jing, R.-S.; Shao, Y.-F.; Liu, X.-J.; Dong, Y.-P.; Li, M.-Z.; Liao, Q.; Lv, G.-C.; et al. Adsorption of Sulfamethoxazole and Tetracycline on Montmorillonite in Single and Binary Systems. Colloids Surf., A 2019, 575, 264–270. DOI: 10.1016/j.colsurfa.2019.05.025.
  • Cetecioglu, Z.; Ince, B.; Gros, M.; Rodriguez-Mozaz, S.; Barceló, D.; Orhon, D.; Ince, O. Chronic Impact of Tetracycline on the Biodegradation of an Organic Substrate Mixture under Anaerobic Conditions. Water Res. 2013, 47, 2959–2969. DOI: 10.1016/j.watres.2013.02.053.
  • Wang, C.-K.; Huang, B.-M. Degradation of Tetracycline by Advanced Oxidation Processes: Sono-Fenton and Ozonation Processes. DWT. 2017, 96, 161–168. DOI: 10.5004/dwt.2017.20741.
  • Wang, Q.-Y.; Duan, B.-R.; Zhao, Y.-Z.; Yu, H.; Weng, Y.-G.; Zhang, T.-T. Photocatalytic and Electrochemical Characteristics of BiFeO3-TiO2 Nanoheterostructure for Leather Dyes Degradation. Int. J. Electrochem. Sci. 2021, 16, ArticleID:210520. DOI: 10.20964/2021.05.16.
  • Chen, F.; Yang, Q.; Sun, J.; Yao, F.-B.; Wang, S.-N.; Wang, Y.-L.; Wang, X.-L.; Li, X.-M.; Niu, C.-G.; Wang, D.-B.; Zeng, G.-M. Enhanced Photocatalytic Degradation of Tetracycline by AgI/BiVO4 Heterojunction under Visible-Light Irradiation: Mineralization Efficiency and Mechanism. ACS Appl. Mater. Interfaces 2016, 8, 32887–32900. DOI: 10.1021/acsami.6b12278.
  • Niu, J.-N.; Albero, J.; Atienzar, P.; Garcia, H. Porous Single‐Crystal‐Based Inorganic Semiconductor Photocatalysts for Energy Production and Environmental Remediation: Preparation, Modification, and Applications. Adv. Funct. Mater. 2020, 30, 1908984. DOI: 10.1002/adfm.201908984.
  • Liras, M.; Barawi, M.; de la Peña O'Shea, V. A. Hybrid Materials Based on Conjugated Polymers and Inorganic Semiconductors as Photocatalysts: From Environmental to Energy Applications. Chem. Soc. Rev. 2019, 48, 5454–5487. DOI: 10.1039/c9cs00377k.
  • Augustin, A.; Chuaicham, C.; Shanmugam, M.; Vellaichamy, B.; Rajendran, S.; Hoang, T.-K.-A.; Sasaki, K.; Sekar, K. Recent Development of Organic–Inorganic Hybrid Photocatalysts for Biomass Conversion into Hydrogen Production. Nanoscale Adv. 2022, 4, 2561–2582. DOI: 10.1039/d2na00119e.
  • Al Zoubi, W.; Salih Al-Hamdani, A.-A.; Sunghun, B.; Ko, Y.-G. A Review on TiO2-Based Composites for Superior Photocatalytic Activity. Rev. Inorg. Chem. 2021, 41, 213–222. DOI: 10.1515/revic-2020-0025.
  • Priya, A.-K.; Suresh, R.; Kumar, P.-S.; Rajendran, S.; Vo, D.-V.-N.; Soto-Moscoso, M. A Review on Recent Advancements in Photocatalytic Remediation for Harmful Inorganic and Organic Gases. Chemosphere 2021, 284, 131344. DOI: 10.1016/j.chemosphere.2021.131344.
  • Xu, J.-S.; Brenner, T.-J.-K.; Chen, Z.-P.; Neher, D.; Antonietti, M.; Shalom, M. Upconversion-Agent Induced Improvement of g-C3N4 Photocatalyst under Visible Light. ACS Appl. Mater. Interfaces. 2014, 6, 16481–16486. DOI: 10.1021/am5051263.
  • Sahoo, S.; Acharya, R. An Overview on Recent Developments in Synthesis and Molecular Level Structure of Visible-Light Responsive g-C3N4 Photocatalyst towards Environmental Remediation. Mater. Today: Proc. 2021, 35, 150–155. DOI: 10.1016/j.matpr.2020.04.008.
  • Patnaik, S.; Sahoo, D.-P.; Parida, K. Recent Advances in Anion Doped g-C3N4 Photocatalysts: A Review. Carbon 2021, 172, 682–711. DOI: 10.1016/j.carbon.2020.10.073.
  • Liu, X.-L.; Ma, R.; Zhuang, L.; Hu, B.-W.; Chen, J.-R.; Liu, X.-Y.; Wang, X.-K. Recent Developments of Doped g-C3N4 Photocatalysts for the Degradation of Organic Pollutants. Crit. Rev. Environ. Sci. Technol. 2021, 51, 751–790. DOI: 10.1080/10643389.2020.1734433.
  • Gao, M.-M.; Wei, C.; Lin, X.-Q.; Liu, Y.; Hu, F.-Q.; Zhao, Y.-S. Controlled Assembly of Organic Whispering-Gallery-Mode Microlasers as Highly Sensitive Chemical Vapor Sensors. Chem. Commun. (Camb) 2017, 53, 3102–3105. DOI: 10.1039/c6cc08094d.
  • Kabra, D.; Lu, L.-P.; Song, M.-H.; Snaith, H.-J.; Friend, R.-H. Efficient Single-Layer Polymer Light-Emitting Diodes. Adv. Mater. 2010, 22, 3194–3198. DOI: 10.1002/adma.201000317.
  • Zaumseil, J.; Donley, C.-L.; Kim, J.-S.; Friend, R.-H.; Sirringhaus, H. Efficient Top-Gate, Ambipolar, Light-Emitting Field-Effect Transistors Based on a Green-Light-Emitting Polyfluorene. Adv. Mater. 2006, 18, 2708–2712. DOI: 10.1002/adma.200601080.
  • Xin, X.; Zhang, H.-X.; Xu, G.-Y.; Tan, Y.-B.; Zhang, J.; Lv, X. Influence of CTAB and SDS on the Properties of Oil-in-Water Nano-Emulsion with Paraffin and Span 20/Tween 20. Colloids Surf., A 2013, 418, 60–67. DOI: 10.1016/j.colsurfa.2012.10.065.
  • Lu, W.-W.; Liu, Y.; Zhang, Z.-Y.; Xiao, J.-P.; Liu, C.-Y. Dual Emissive Amphiphilic Carbon Dots as Ratiometric Fluorescent Probes for the Determination of Critical Micelle Concentration of Surfactants. Anal. Methods 2022, 14, 672–677. DOI: 10.1039/d1ay02042k.
  • Fu, J.-W.; Yu, J.-G.; Jiang, C.-J.; Cheng, B. g-C3N4-Based Heterostructured Photocatalysts. Adv. Energy Mater. 2018, 8, 1701503. DOI: 10.1002/aenm.201701503.
  • Li, L.-X.; Gao, H.-J.; Liu, G.-R.; Wang, S.-F.; Yi, Z.; Wu, X.-W.; Yang, H. Synthesis of Carnation Flower-like Bi2O2CO3 Photocatalyst and Its Promising Application for Photoreduction of Cr (VI). Adv. Powder Technol. 2022, 33, 103481. DOI: 10.1016/j.apt.2022.103481.
  • Gu, J.-W.; Guo, R.-T.; Miao, Y.-F.; Liu, Y.-Z.; Wu, G.-L.; Duan, C.-P.; Pan, W.-G. Construction of Full Spectrum-Driven CsxWO3/g- C3N4 Heterojunction Catalyst for Efficient Photocatalytic CO2 Reduction. Appl. Surf. Sci. 2021, 540, 148316. DOI: 10.1016/j.apsusc.2020.148316.
  • Cao, Y.; Cui, K.-P.; Chen, Y.-H.; Cui, M.-S.; Li, G.-H.; Li, D.; Yang, X.-J. Efficient Degradation of Tetracycline by H2O2 Catalyzed by FeOCl: A Wide Range of pH Values from 3 to 7. Solid State Sci. 2021, 113, 106548. DOI: 10.1016/j.solidstatesciences.2021.106548.
  • Mahmoodi, N.-M.; Abdi, J. Nanoporous Metal-Organic Framework (MOF-199): Synthesis, Characterization and Photocatalytic Degradation of Basic Blue 41. Microchem. J. 2019, 144, 436–442. DOI: 10.1016/j.microc.2018.09.033.
  • Wang, J.-W.; Liu, D.; Zhu, Y.-F.; Zhou, S.-Y.; Guan, S.-Y. Supramolecular Packing Dominant Photocatalytic Oxidation and Anticancer Performance of PDI. Appl. Catal., B 2018, 231, 251–261. DOI: 10.1016/j.apcatb.2018.03.026.
  • Xu, Y.-G.; Ge, F.-Y.; Xie, M.; Huang, S.-Q.; Qian, J.-C.; Wang, H.-F.; He, M.-Q.; Xu, H.; Li, H.-M. Fabrication of Magnetic BaFe12O19/Ag3PO4 Composites with an in Situ Photo-Fenton-like Reaction for Enhancing Reactive Oxygen Species under Visible Light Irradiation. Catal. Sci. Technol. 2019, 9, 2563–2570. DOI: 10.1039/C8CY02449A.
  • Luo, J.; Lin, P.-P.; Zheng, P.-L.; Zhou, X.-F.; Ning, X.-M.; Zhan, L.; Wu, Z.-J.; Liu, X.-N.; Zhou, X.-S. In Suit Constructing S-Scheme FeOOH/MgIn2S4 Heterojunction with Boosted Interfacial Charge Separation and Redox Activity for Efficiently Eliminating Antibiotic Pollutant. Chemosphere 2022, 298, 134297. DOI: 10.1016/j.chemosphere.2022.134297.
  • Li, S.-J.; Cai, M.-J.; Liu, Y.-P.; Zhang, J.-L.; Wang, C.-C.; Zang, S.-H.; Li, Y.-J.; Zhang, P.; Li, X. In Situ Construction of a C3N5 Nanosheet/Bi2WO6 Nanodot S-Scheme Heterojunction with Enhanced Structural Defects for the Efficient Photocatalytic Removal of Tetracycline and Cr (VI). Inorg. Chem. Front. 2022, 9, 2479–2497. DOI: 10.1039/D2QI00317A.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.