316
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

An eco-friendly approach to biosurfactant production using low-cost wastes

ORCID Icon & ORCID Icon
Pages 1599-1612 | Received 16 Nov 2022, Accepted 11 Jun 2023, Published online: 24 Jun 2023

References

  • Venkataraman, S.; Rajendran, D. S.; Kumar, P. S.; Nguyen, D. V.; Kumar Vaidyanathan, V. Extraction, Purification and Applications of Biosurfactants Based on Microbial-Derived Glycolipids and Lipopeptides: A Review. Environ. Chem. Lett. 2022, 20, 949–970. DOI: 10.1007/s10311-021-01336-2.
  • Banerjee, B.; Kaur, G.; Priya, A. Naturally Occurring Bioactive Biosurfactants. In Green Sustainable Process for Chemical and Environmental Engineering and Science. Biomedical Application of Biosurfactant in Medical Sector; Inamuddin, C. O. A., Ahamed, M. I., Eds; Elsevier: The Netherlands, 2022; pp 337–350. DOI: 10.1016/B978-0-323-85146-6.00015-2.
  • Sarwar, A.; Brader, G.; Corretto, E.; Aleti, G.; Ullah, M. A.; Sessitsch, A.; Hafeez, F. Y. Qualitative Analysis of Biosurfactants from Bacillus Species Exhibiting Antifungal Activity. PLoS One. 2018, 13, e0201624. DOI: 10.1371/journal.pone.0201624.
  • Sen, S.; Borah, S. N.; Bora, A.; Deka, S. Production, Characterization, and Antifungal Activity of a Biosurfactant Produced by Rhodotorula Babjevae YS3. Microb. Cell. Fact. 2017, 16, 1–14. DOI: 10.1186/s12934-017-0711-z.
  • Anaukwu, C. G.; Ogbukagu, C. M.; Ekwealor, I. A. Optimized Biosurfactant Production by Pseudomonas aeruginosa Strain CGA1 Using Agro-Industrial Waste as Sole Carbon Source. AiM 2020, 10, 543–562. DOI: 10.4236/aim.2020.1010040.
  • Zhang, Y.; Placek, T. L.; Jahan, R.; Alexandridis, P.; Tsianou, M. Rhamnolipid Micellization and Adsorption Properties. IJMS 2022, 23, 11090. DOI: 10.3390/ijms231911090.
  • Luna, J. M.; Rufino, R. D.; Sarubbo, L. A.; Campos-Takaki, G. M. Characterization, Surface Properties and Biological Activity of a Biosurfactant Produced from Industrial Waste by Candida Sphaerica UCP0995 for Application in the Petroleum Industry. Colloids Surf. B Biointerfaces 2013, 102, 202–209. DOI: 10.1016/j.colsurfb.2012.08.008.
  • Suthar, H.; Nerurkar, A. Characterization of Biosurfactant Produced by Bacillus Licheniformis TT42 Having Potential for Enhanced Oil Recovery. Appl. Biochem. Biotechnol. 2016, 180, 248–260. DOI: 10.1007/s12010-016-2096-6.
  • Fernandes, P. A. V.; Arruda, I. R. d.; Santos, A. F. A. B. d.; Araújo, A. A. d.; Maior, A. M. S.; Ximenes, E. A. Antimicrobial Activity of Surfactants Produced by Bacillus Subtilis R14 against Multidrug-Resistant Bacteria. Braz. J. Microbiol. 2007, 38, 704–709. DOI: 10.1590/S1517-83822007000400022.
  • Sambanthamoorthy, K.; Feng, X.; Patel, R.; Patel, S.; Paranavitana, C. Antimicrobial and Antibiofilm Potential of Biosurfactants Isolated from Lactobacilli against Multi-Drug-Resistant Pathogens. BMC Microbiol. 2014, 14, 2–9. DOI: 10.1186/1471-2180-14-197.
  • Satpute, S. K.; Banpurkar, A. G.; Banat, I. M.; Sangshetti, J. N.; Patil, R. H.; Gade, W. N. Multiple Roles of Biosurfactants in Biofilms. Curr. Pharm. Des. 2016, 22, 1429–1448. DOI: 10.2174/1381612822666160120152704.
  • Paraszkiewicz, K.; Moryl, M.; Płaza, G.; Bhagat, D.; Satpute, S. K.; Bernat, P. Surfactants of Microbial Origin as Antibiofilm Agents. Int. J. Environ. Health Res. 2021, 31, 401–420. DOI: 10.1080/09603123.2019.1664729.
  • Monteiro, L.; Mariano, R.; Souto-Maior, A. Antagonism of Bacillus Spp. Against Xanthomonas Campestris pv. Campestris. Braz. Arch. Biol. Technol. 2005, 48, 23–29. DOI: 10.1590/S1516-89132005000100004.
  • Makkar, R.; Cameotra, S.; Banat, I. Advances in Utilization of Renewable Substrates for Biosurfactant Production. AMB Expr. 2011, 1, 5. DOI: 10.1186/2191-0855-1-5.
  • Banat, I. M.; Satpute, S. K.; Cameotra, S. S.; Patil, R.; Nyayanit, N. V. Cost Effective Technologies and Renewable Substrates for Biosurfactants’ Production. Front. Microbiol. 2014, 5, 697. DOI: 10.3389/fmicb.2014.00697.
  • Vijayaraghavan, P.; Arasu, M. V.; Rajan, R. A.; Al-Dhabi, N. Enhanced Production of Fibrinolytic Enzyme by a New Xanthomonas Oryzae IND3 Using Low-Cost Culture Medium by Response Surface Methodology. Saudi J. Biol. Sci. 2019, 26, 217–224. DOI: 10.1016/j.sjbs.2018.08.029.
  • Al-Dhabi, N. A.; Esmail, G. A.; Arasu, M. V. Enhanced Production of Biosurfactant from Bacillus Subtilis Strain Al-Dhabi-130 under Solid-State Fermentation Using Date Molasses from Saudi Arabia for Bioremediation of Crude-Oil-Contaminated Soils. IJERPH 2020, 17, 8446. DOI: 10.3390/ijerph17228446.
  • Bilen Ozyurek, S.; Seyis Bilkay, I. Biodegradation of Petroleum by Klebsiella Pneumoniae Isolated from Drilling Fluid. Int. J. Environ. Sci. Technol. 2018, 15, 2107–2116. DOI: 10.1007/s13762-017-1581-y.
  • Bilen Ozyurek, S.; Seyis Bilkay, I. Comparison of Petroleum Biodegradation Efficiencies of Three Different Bacterial Consortia Determined in Petroleum-Contaminated Waste Mud Pit. SN Appl. Sci. 2020, 2, 272. DOI: 10.1007/s42452-020-2044-5.
  • Ostendorf, T. A.; Silva, I. A.; Converti, A.; Sarubbo, L. A. Production and Formulation of a New Low-Cost Biosurfactant to Remediate Oil-Contaminated Seawater. J. Biotechnol. 2019, 295, 71–79. DOI: 10.1016/j.jbiotec.2019.01.025.
  • Tanzadeh, J.; Ghasemi, M. F.; Anvari, M.; Issazadeh, K. Biological Removal of Crude Oil with the Use of Native Bacterial Consortia Isolated from the Shorelines of the Caspian Sea. Biotechnol. Biotechnol. Equip. 2020, 34, 361–374. DOI: 10.1080/13102818.2020.1756408.
  • Youssef, N.; Elshahed, M. S.; McInerney, M. J. Microbial Processes in Oil Fields: Culprits, Problems, and Opportunities. Adv. Appl. Microbiol. 2009, 66, 141–251. DOI: 10.1016/S0065-2164(08)00806-X.
  • Ibrahim, M. L.; Ijah, U. U. J.; Manga, S. B.; Bilbis, L. S.; Umar, S. Production and Partial Characterization of Biosurfactant Produced by Crude Oil Degrading Bacteria. Int. Biodeter. Biodegrad. 2013, 81, 28–34. DOI: 10.1016/j.ibiod.2012.11.012.
  • Chittepu, O. R. Isolation and Characterization of Biosurfactant Producing Bacteria from Groundnut Oil Cake Dumping Site for the Control of Foodborne Pathogens. Grain Oil Sci. Technol. 2019, 2, 15–20. DOI: 10.1016/j.gaost.2019.04.004.
  • Bodour, A. A.; Miller-Maier, R. M. Application of Modified Drop-Collapse Technique for Surfactant Quantitation and Screening of Biosurfactant-Producing Microorganisms. J. Microbiol. Methods 1998, 32, 273–280. DOI: 10.1016/S0167-7012(98)00031-1.
  • Parthipan, P.; Preetham, E.; Machuca, L. L.; Rahman, P. K. S. M.; Murugan, K.; Rajasekar, A. Biosurfactant and Degradative Enzymes Mediated Crude Oil Degradation by Bacterium Bacillus Subtilis A1. Front. Microbiol. 2017, 8, 1–14. DOI: 10.3389/fmicb.2017.00193.
  • Adnan, M.; Siddiqui, A. J.; Hamadou, W. S.; Ashraf, S. A.; Hassan, M. I.; Snoussi, M.; Badraoui, R.; Jamal, A.; Bardakci, F.; Awadelkareem, A. M.; et al. Functional and Structural Characterization of Pediococcus Pentosane’s-Derived Biosurfactant and Its Biomedical Potential against Bacterial Adhesion, Quorum Sensing, and Biofilm Formation. Antibiotics 2021, 10, 1371. DOI: 10.3390/antibiotics10111371.
  • Kumar, S.; Dubey, R. C.; Maheshwari, D. K. Biosurfactant-Mediated Biocontrol of Macrophomina Phaseolina Causing Charcoal Rot in Vigna Mungo by a Plant Growth Promoting Enterococcus sp. BS13. J. Plant Pathol. Microbiol. 2016, 7, 11. DOI: 10.4172/2157-7471.1000385.
  • Ashitha, A.; Radhakrishnan, E. K.; Mathew, J. Characterization of Biosurfactant Produced by the Endophyte Burkholderia sp. WYAT7 and Evaluation of Its Antibacterial and Antibiofilm Potentials. J. Biotechnol. 2020, 313, 1–10. DOI: 10.1016/j.jbiotec.2020.03.005.
  • Płaza, G. A.; Zjawiony, I.; Banat, I. M. Use of Different Methods for Detection of Thermophilic Biosurfactant Producing Bacteria from Hydrocarbon-Contaminated and Bioremediated Soils. J. Pet. Sci. Eng. 2006, 50, 71–77. DOI: 10.1016/j.petrol.2005.10.005.
  • San Keskin, N. O.; Han, D.; Ozkan, A. D.; Angun, P.; Onarman Umu, O. C.; Tekinay, T. Production and Structural Characterization of Biosurfactant Produced by Newly Isolated Staphylococcus Xylosus STF1 from Petroleum Contaminated Soil. J. Pet. Sci. Eng. 2015, 133, 689–694. DOI: 10.1016/j.petrol.2015.07.011.
  • Ekprasert, J.; Laopila, K.; Kanakai, S. Biosurfactant Production by a Newly Isolated Enterobacter Cloacae B14 Capable of Utilizing Spent Engine Oil. Pol. J. Environ. Stud. 2019, 28, 2603–2610. DOI: 10.15244/pjoes/92120.
  • Arifiyanto, A.; Surtiningsih, T.; Agustina, D.; Alami, N. H.; Ni’matuzahroh; Fatimah. Antimicrobial Activity of Biosurfactants Produced by Actinomycetes Isolated from Rhizosphere of Sidoarjo Mud Region. Biocatal. Agric. Biotechnol. 2020, 24, 101513. DOI: 10.1016/j.bcab.2020.101513.
  • Rosenberg, M.; Gutnick, D.; Rosenberg, E. Adherence of Bacteria to Hydrocarbons: A Simple Method for Measuring Cell-Surface Hydrophobicity. FEMS Microbiol. Lett. 1980, 9, 29–33. DOI: 10.1111/j.1574-6968.1980.tb05599.x.
  • Nayarisseri, A.; Singh, P.; Singh, S. K. Screening, Isolation and Characterization of Biosurfactant Producing Bacillus subtilis Strain ANSKLAB03. Bioinformation 2018, 14, 304–314. DOI: 10.6026/97320630014304.
  • van der Vegt, W.; van der Mei, H. C.; Noordmans, J.; Busscher, H. J. Assessment of Bacterial Biosurfactant Production through Axisymmetrical Drop Shape-Analysis by Profile. Appl. Microbiol. Biotechnol. 1991, 35, 766–770. DOI: 10.1007/BF00169892.
  • Patowary, K.; Patowary, R.; Kalita, M. C.; Deka, S. Characterization of Biosurfactant Produced during Degradation of Hydrocarbons Using Crude Oil as Sole Source of Carbon. Front. Microbiol. 2017, 8, 1–14. DOI: 10.3389/fmicb.2017.00279.
  • Balan, S. S.; Kumar, G.; Jayalakshmi, S. Pontifactin. A New Lipopeptide Biosurfactant Produced by a Marine Pontibacter korlensis Strain SBK-47: Purification, Characterization and Its Biological Evaluation. Process Biochem. 2016, 51, 2198–2207. DOI: 10.1016/j.procbio.2016.09.009.
  • Dlamini, B.; Rangarajan, V.; Clarke, K. G. A Simple Thin Layer Chromatography Based Method for the Quantitative Analysis of Biosurfactant Surfactin Vis-A-Vis the Presence of Lipid and Protein Impurities in the Processing Liquid. Biocatal. Agric. Biotechnol. 2020, 25, 101587. DOI: 10.1016/j.bcab.2020.101587.
  • Singh, R.; Kumar Singh, S.; Rathore, D. Analysis of Biosurfactants Produced by Bacteria Growing on Textile Sludge and Their Toxicity Evaluation for Environmental Application. J. Dispers. Sci. Technol. 2020, 41, 510–522. DOI: 10.1080/01932691.2019.1592686.
  • Zargar, A. N.; Mishra, S.; Kumar, M.; Srivastava, P. Isolation and Chemical Characterization of the Biosurfactant Produced by Gordonia sp. IITR100. PLoS One 2022, 17, e0264202. DOI: 10.1371/journal.pone.0264202.
  • Eldin, A. M.; Kamel, Z.; Hossam, N. Purification and Identification of Surface Active Amphiphilic Candidates Produced by Geotrichum candidum MK880487 Possessing Antifungal Property. J. Dispers. Sci. Technol. 2021, 42, 1082–1098. DOI: 10.1080/01932691.2020.1813157.
  • Meena, K. R.; Dhiman, R.; Singh, K.; Kumar, S.; Sharma, A.; Kanwar, S. S.; Mondal, R.; Das, S.; Franco, O. L.; Kumar Mandal, A. Purification and Identification of a Surfactin Biosurfactant and Engine Oil Degradation by Bacillus velezensis KLP2016. Microb. Cell Fact 2021, 20, 26. DOI: 10.1186/s12934-021-01519-0.
  • Elazzazy, A. M.; Abdelmoneim, T. S.; Almaghrabi, O. A. Isolation and Characterization of Biosurfactant Production under Extreme Environmental Conditions by Alkali-Halo-Thermophilic Bacteria from Saudi Arabia. Saudi J. Biol. Sci. 2015, 22, 466–475. DOI: 10.1016/j.sjbs.2014.11.018.
  • Gomaa, E. Z.; El-Meihy, R. M. Bacterial Biosurfactant from Citrobacter Freundii MG812314.1 as a Bioremoval Tool of Heavy Metals from Wastewater. Bull. Natl. Res. Cent. 2019, 43, 1–14. DOI: 10.1186/s42269-019-0088-8.
  • Das, P.; Mukherjee, S.; Sen, R. Antimicrobial Potential of a Lipopeptide Biosurfactant Derived from a Marine Bacillus circulans. J. Appl. Microbiol. 2008, 104, 1675–1684. DOI: 10.1111/j.1365-2672.2007.03701.x.
  • Mohd-Said, S.; Kweh, W. W.; Than, C. Y.; Zainal-Abidin, Z.; Adnalizawati Adnan, S. N.; Baharin, S. A.; Soo, E. In Vitro Inhibitory and Biofilm Disruptive Activities of Ginger Oil against Enterococcus faecalis. F1000Res 2018, 7, 1859. DOI: 10.12688/f1000research.16851.1.
  • Ndlovu, T.; Rautenbach, M.; Vosloo, J. A.; Khan, S.; Khan, W. Characterization and Antimicrobial Activity of Biosurfactant Extracts Produced by Bacillus Amyloliquefaciens and Pseudomonas Aeruginosa Isolated from a Wastewater Treatment Plant. AMB Expr. 2017, 7, 2–19. DOI: 10.1186/s13568-017-0363-8.
  • Clinical and Laboratory Standards Institute. M11-A8 Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria; Approved Standard - Eight Edition. 2012.
  • Patel, K.; Patel, M. Improving Bioremediation Process of Petroleum Wastewater Using Biosurfactants Producing Stenotrophomonas sp. S1VKR-26 and Assessment of Phytotoxicity. Bioresour. Technol. 2020, 315, 123861. DOI: 10.1016/j.biortech.2020.123861.
  • Ishaq, U.; Akram, M. S.; Iqbal, Z.; Rafiq, M.; Akrem, A.; Nadeem, M.; Shafi, F.; Shafiq, Z.; Mahmood, S.; Baig, M. A. Production and Characterization of Novel Self-Assembling Biosurfactants from Aspergillus flavus. J. Appl. Microbiol. 2015, 119, 1035–1045. DOI: 10.1111/jam.12929.
  • Kurniati, T. H.; Rahayu, S.; Sukmawati, D.; Maharani, W. Screening of Biosurfactant Producing Bacteria from Hydrocarbon Contaminated Soil. J. Phys.: Conf. Ser. 2019, 1402, 055026. DOI: 10.1088/1742-6596/1402/5/055026.
  • Rani, M.; Weadge, J. T.; Jabaji, S. Isolation and Characterization of Biosurfactant-Producing Bacteriafrom Oil Well Batteries with Antimicrobial Activities against Food-Borne and Plant Pathogens. Front. Microbiol. 2020, 11, 1–17. DOI: 10.3389/fmicb.2020.00064.
  • Sousa, M.; Dantas, I. T.; Feitosa, F. X.; Alencar, A. E. V.; Soares, S. A.; Melo, V. M. M.; Gonçalves, L. R. B.; Sant’ana, H. B. Performance of a Biosurfactant Produced by Bacillus subtilis Lami005 on the Formation of Oil/Biosurfactant/Water Emulsion: Study of the Phase Behavior of Emulsified Systems. Braz. J. Chem. Eng. 2014, 31, 613–623. DOI: 10.1590/0104-6632.20140313s00002766.
  • Reis, C. B. L. d.; Morandini, L. M. B.; Bevilacqua, C. B.; Bublitz, F.; Ugalde, G.; Mazutti, M. A.; Jacques, R. J. S. First Report of the Production of a Potent Biosurfactant with, -Trehalose by Fusarium Fujikuroi under Optimized Conditions of Submerged Fermentation. Braz. J. Microbiol. 2018, 49, 185–192. DOI: 10.1016/j.bjm.2018.04.004.
  • Gomaa, O. M.; Selim, N.; Fathy, R.; Maghrawy, H. H.; Gamal, M.; Kareem, H. A.; Kyazze, G.; Keshavarz, T. Characterization of a Biosurfactant Producing Electroactive Bacillus sp. for Enhanced Microbial Fuel Cell Dye Decolourisation. Enzyme Microb. Technol. 2021, 147, 109767. DOI: 10.1016/j.enzmictec.2021.109767.
  • Panjiar, N.; Mattam, A. J.; Jose, S.; Gandham, S.; Velankar, H. R. Valorization of Xylose-Rich Hydrolysate from Rice Straw, an Agroresidue, through Biosurfactant Production by the Soil Bacterium Serratia nematodiphila. Sci. Total. Environ. 2020, 729, 138933. DOI: 10.1016/j.scitotenv.2020.138933.
  • Nair, A. S.; Al-Bahry, S.; Sivakumar, N. Co-Production of Microbial Lipids and Biosurfactant from Waste Office Paper Hydrolysate Using a Novel Strain Bacillus velezensis ASN1. Biomass Conv. Bioref. 2020, 10, 383–391. DOI: 10.1007/s13399-019-00420-6.
  • Fang, C.; Boe, K.; Angelidaki, I. Biogas Production from Potato-Juice, a by-Product from Potato-Starch Processing, in Upflow Anaerobic Sludge Blanket (UASB) and Expanded Granular Sludge Bed (EGSB) Reactors. Bioresour. Technol. 2011, 102, 5734–5741. DOI: 10.1016/j.biortech.2011.03.013.
  • Bradshaw, J. E.; Bonierbale, M. Potatoes. In Root and Tuber Crops; Bradshaw, J. E., Ed.; Springer: New York, NY, USA, 2010; Vol. 7, pp 1–52
  • Ciecholewska-Juśko, D.; Broda, M.; Żywicka, A.; Styburski, D.; Sobolewski, P.; Gorący, K.; Migdał, P.; Junka, A.; Fijałkowski, K. Potato Juice, a Starch Industry Waste, as a Cost-Effective Medium for the Biosynthesis of Bacterial Cellulose. IJMS 2021, 22, 10807. DOI: 10.3390/ijms221910807.
  • Al-Bahry, S.; Al-Wahaibi, Y.; Elshafie, A.; Al-Bemani, A.; Joshi, S.; Al-Makhmari, H.; Al-Sulaimani, H. Biosurfactant Production by Bacillus subtilis B20 Using Date Molasses and Its Possible Application in Enhanced Oil Recovery. Int. Biodeterior. Biodegrad. 2013, 81, 141–146. DOI: 10.1016/j.ibiod.2012.01.006.
  • Al-Wahaibi, Y.; Joshi, S.; Al-Bahry, S.; Elshafie, A.; Al-Bemani, A.; Shibulal, B. Biosurfactant Production by Bacillus subtilis B30 and Its Application in Enhancing Oil Recovery. Colloids Surf. B Biointerfaces 2014, 114, 324–333. DOI: 10.1016/j.colsurfb.2013.09.022.
  • Santos, D. K.; Brandão, Y. B.; Rufino, R. D.; Luna, J. M.; Salgueiro, A. A.; Santos, V. A.; Sarubbo, L. A. Optimization of Cultural Conditions for Biosurfactant Production from Candida lipolytica. Biocatal. Agric. Biotechnol. 2014, 3, 48–57. DOI: 10.1016/j.bcab.2014.02.004.
  • Badrul Hisham, N. H.; Ibrahim, M. F.; Ramli, N.; Abd-Aziz, S. Production of Biosurfactant Produced from Used Cooking Oil by Bacillus sp. HIP3 for Heavy Metals Removal. Molecules 2019, 24, 2617. DOI: 10.3390/molecules24142617.
  • Ghasemi, A.; Moosavi-Nasab, M.; Setoodeh, P.; Mesbahi, G.; Yousefi, G. Biosurfactant Production by Lactic Acid Bacterium Pediococcus dextrinicus SHU1593 Grown on Different Carbon Sources: Strain Screening Followed by Product Characterization. Sci. Rep. 2019, 9, 1–12. DOI: 10.1038/s41598-019-41589-0.
  • Sharma, D.; Saharan, B. S. Functional Characterization of Biomedical Potential of Biosurfactant Produced by Lactobacillus helveticus. Biotechnol. Rep. (Amst) 2016, 11, 27–35. DOI: 10.1016/j.btre.2016.05.001.
  • Vijayanand, S.; Divyashree, M. Bioremediation of Heavy Metals Using Biosurfactant Producing Microorganisms. Int. J. Pharm. Sci. Res. 2015, 6, 840–847.
  • Mouafo, T. H.; Mbawala, A.; Ndjouenkeu, R. Effect of Different Carbon Sources on Biosurfactants’ Production by Three Strains of Lactobacillus Spp. Biomed. Res. Int. 2018, 2018, 5034783. DOI: 10.1155/2018/5034783.
  • Amiriyan, A.; Mazaheri, A. M.; Sajadian, V. A.; Noohi, A. A. Bioemulsan Production by Iranian Oil Reservoirs Microorganism. Iran J. Env. Health Sci. Eng. 2004, 1, 28–35.
  • Kanna, R.; Gummadi, S. N.; Kumar, G. S. Production and Characterization of Biosurfactant by Pseudomonas putida MTCC 2467. J. Biol. Sci. 2014, 14, 436–445. DOI: 10.3923/jbs.2014.436.445.
  • Pele, M. A.; Ribeaux, D. R.; Vieira, E. R.; Souza, A. F.; Luna, M. A. C.; Rodríguez, D. M.; Andrade, R. F. S.; Alviano, D. S.; Alviano, C. S.; Barreto-Bergter, E.; et al. Conversion of Renewable Substrates for Biosurfactant Production by Rhizopus Arrhizus UCP 1607 and Enhancing the Removal of Diesel Oil from Marine Soil. Electron. J. Biotechnol. 2019, 38, 40–48. DOI: 10.1016/j.ejbt.2018.12.003.
  • Jahan, R.; Bodratti, A. M.; Tsianou, M.; Alexandridis, P. Biosurfactants, Natural Alternatives to Synthetic Surfactants: Physicochemical Properties and Applications. Adv. Colloid Interface Sci. 2020, 275, 102061. DOI: 10.1016/j.cis.2019.102061.
  • Inès, M.; Dhouha, G. Lipopeptide Surfactants: Production, Recovery and Pore Forming Capacity. Peptides 2015, 71, 100–112. DOI: 10.1016/j.peptides.2015.07.006.
  • Jain, R. M.; Mody, K.; Joshi, N.; Mishra, A.; Jha, B. Production and Structural Characterization of Biosurfactant Produced by an Alkaliphilic Bacterium, Klebsiella sp.: Evaluation of Different Carbon Sources. Colloids Surf. B Biointerfaces 2013, 108, 199–204. DOI: 10.1016/j.colsurfb.2013.03.002.
  • Adebajo, S. O.; Akintokun, P. O.; Ojo, A. E.; Akintokun, A. K.; Badmos, O. A. Recovery of Biosurfactant Using Different Extraction Solvent by Rhizospheric Bacteria Isolated from Rice-Husk and Poultry Waste Biochar Amended Soil. Egypt. J. Basic Appl. Sci. 2020, 7, 252–266. DOI: 10.1080/2314808X.2020.1797377.
  • Gayathiri, E.; Prakash, P.; Karmegam, N.; Varjani, S.; Kumar Awasthi, M.; Ravindran, B. Biosurfactants: Potential and Eco-Friendly Material for Sustainable Agriculture and Environmental Safety—a Review. Agronomy 2022, 12, 662. DOI: 10.3390/agronomy12030662.
  • Kalaimurugan, D.; Balamuralikrishnan, B.; Govindarajan, R. K.; Al-Dhabi, N. A.; Arasu, M. V.; Vadivalagan, C.; Venkatesan, S.; Kamyab, H.; Chelliapan, S.; Khanongnuch, C. Production and Characterization of a Novel Biosurfactant Molecule from Bacillus safensis Yks2 and Assessment of Its Efficiencies in Wastewater Treatment by a Directed Metagenomic Approach. Sustainability 2022, 14, 2142. DOI: 10.3390/su14042142.
  • Joy, S.; Rahman, P. K. S. M.; Sharma, S. Biosurfactant Production and Concomitant Hydrocarbon Degradation Potentials of Bacteria Isolated from Extreme and Hydrocarbon Contaminated Environments. J. Chem. Eng. 2017, 317, 232–241. DOI: 10.1016/j.cej.2017.02.054.
  • Geissler, M.; Oellig, C.; Moss, K.; Schwack, W.; Henkel, M.; Hausmann, R. High-Performance Thin-Layer Chromatography (HPTLC) for the Simultaneous Quantification of the Cyclic Lipopeptides Surfactin, Iturin a and Fengycin in Culture Samples of Bacillus Species. J. Chromatogr. B. Anal. Technol. Biomed. Life. Sci. 2017, 1044-1045, 214–224. DOI: 10.1016/j.jchromb.2016.11.013.
  • Bezza, F. A.; Nkhalambayausi Chirwa, E. M. Production and Applications of Lipopeptide Biosurfactant for Bioremediation and Oil Recovery by Bacillus subtilis CN2. Biochem. Eng. J. 2015, 101, 168–178. DOI: 10.1016/j.bej.2015.05.007.
  • Phulpoto, I. A.; Yu, Z.; Hu, B.; Wang, Y.; Ndayisenga, F.; Li, J.; Liang, H.; Qazi, M. A. Production and Characterization of Surfactin-Like Biosurfactant Produced by Novel Strain Bacillus nealsonii S2MT and It’s Potential for Oil Contaminated Soil Remediation. Microb. Cell. Fact. 2020, 19, 145. DOI: 10.1186/s12934-020-01402-4.
  • Soussi, S.; Essid, R.; Hardouin, J.; Gharbi, D.; Elkahoui, S.; Tabbene, O.; Cosette, P.; Jouenne, T.; Limam, F. Utilization of Grape Seed Flour for Antimicrobial Lipopeptide Production by Bacillus amyloliquefaciens C5 Strain. Appl. Biochem. Biotechnol. 2019, 187, 1460–1474. DOI: 10.1007/s12010-018-2885-1.
  • Barale, S. S.; Ghane, S. G.; Sonawane, K. D. Purification and Characterization of Antibacterial Surfactin Isoforms Produced by Bacillus velezensis SK. AMB Expr. 2022, 12, 1–20. DOI: 10.1186/s13568-022-01348-3.
  • Yakimov, M. M.; Timmis, K. N.; Wray, V.; Fredrickson, H. L. Characterization of a New Lipopeptide Surfactant Produced by Thermotolerant and Halotolerant Subsurface Bacillus licheniformis BAS50. Appl. Environ. Microbiol. 1995, 61, 1706–1713. DOI: 10.1128/aem.61.5.1706-1713.1995.
  • Gaur, V. K.; Sharma, P.; Sirohi, R.; Varjani, S.; Taherzadeh, M. J.; Chang, J. S.; Yong Ng, H.; Wong, J. W. C.; Kim, S. H. Production of Biosurfactants from Agro-Industrial Waste and Waste Cooking Oil in a Circular Bioeconomy: An Overview. Bioresour. Technol. 2022, 343, 126059. DOI: 10.1016/j.biortech.2021.126059.
  • Pemmaraju, S. C.; Sharma, D.; Singh, N.; Panwar, R.; Cameotra, S. S.; Pruthi, V. Production of Microbial Surfactants from Oily Sludge-Contaminated Soil by Bacillus subtilis DSVP23. Appl. Biochem. Biotechnol. 2012, 167, 1119–1131. DOI: 10.1007/s12010-012-9613-z.
  • Zompra, A. A.; Chasapi, S. A.; Twigg, M. S.; Salek, K.; Anestopoulos, I.; Galanis, A.; Pappa, A.; Gutierrez, T.; Banat, I. M.; Marchant, R.; et al. Multi-Method Biophysical Analysis in Discovery, Identification, and in-Depth Characterization of Surface‐Active Compounds. Front. Mar. Sci. 2022, 9, 1–18. DOI: 10.3389/fmars.2022.1023287.
  • Basak, G.; Das, N. Characterization of Sophorolipid Biosurfactant Produced by Cryptococcus Sp. VITGBN2 and Its Application on Zn (II) Removal from Electroplating Wastewater. J. Environ. Biol. 2014, 35, 1087–1094.
  • Sotirova, A. V.; Spasova, D. I.; Galabova, D. N.; Karpenko, E.; Shulga, A. Rhamnolipid–Biosurfactant Permeabilizing Effects on Gram-Positive and Gram-Negative Bacterial Strains. Curr. Microbiol. 2008, 56, 639–644. DOI: 10.1007/s00284-008-9139-3.
  • Gurkok, S.; Ozdal, M. Microbial Biosurfactants: Properties, Types, and Production. Anatol. J. Biol. 2021, 2, 7–12.
  • Roy, A. Review on the Biosurfactants: Properties, Types and Its Applications. J. Fundam. Renew. Energy Appl. 2017, 8, 248. DOI: 10.4172/20904541.1000248.
  • Akbari, S.; Abdurahman, N. H.; Yunus, R. M.; Fayaz, F.; Alara, O. R. Biosurfactants—a New Frontier for Social and Environmental Safety: A Mini Review. Biotechnol. Res. Innov. 2018, 2, 81–90. DOI: 10.1016/j.biori.2018.09.001.
  • Sang, Y.; Blecha, F. Antimicrobial Peptides and Bacteriocins: Alternatives to Traditional Antibiotics. Anim. Health Res. Rev. 2008, 9, 227–235. DOI: 10.1017/S1466252308001497.
  • Yount, N. Y.; Yeaman, M. R. Peptide Antimicrobials: Cell Wall as a Bacterial Target. Ann. N Y Acad. Sci. 2013, 1277, 127–138. DOI: 10.1111/nyas.12005.
  • Jasim, B.; Sreelakshmi, S.; Mathew, J.; Radhakrishnan, E. K. Identification of Endophytic Bacillus mojavensis with Highly Specialized Broad Spectrum Antibacterial Activity. 3 Biotech. 2016, 6, 187–197. DOI: 10.1007/s13205-016-0508-5.
  • Sun, L.; Lu, Z.; Bie, X.; Lu, F.; Yang, S. Isolation and Characterization of a Co-Producer of Fengycins and Surfactins, Endophytic Bacillus amyloliquefaciens ES-2, from Scutellaria Baicalensis Georgi. World. J. Microbiol. Biotechnol. 2006, 22, 1259–1266. DOI: 10.1007/s11274-006-9170-0.
  • Liu, X.; Ren, B.; Gao, H.; Liu, M.; Dai, H.; Song, F.; Yu, Z.; Wang, S.; Hu, J.; Kokare, C. R.; Zhang, L. Optimization for the Production of Surfactin with a New Synergistic Antifungal Activity. PLoS One. 2012, 7, e34430. DOI: 10.1371/journal.pone.0034430.
  • Janek, T.; Łukaszewicz, M.; Krasowska, A. Antiadhesive Activity of the Biosurfactant Pseudofactin II Secreted by the Arctic Bacterium Pseudomonas fluorescens BD5. BMC Microbiol. 2012, 12, 24. DOI: 10.1186/a1471-2180-12-24.
  • Mishra, R.; Kumari Panda, A.; Mandal, S.; Shakeel, M.; Bisht, S. S.; Khan, J. Natural anti-Biofilm Agents: Strategies to Control Biofilm-Forming Pathogens. Front. Microbiol. 2020, 11, 566325. DOI: 10.3389/fmicb.2020.566325.
  • Cordeiro, R. A.; Weslley Caracas Cedro, E.; Raquel Colares Andrade, A.; Serpa, R.; José de Jesus Evangelista, A.; Sales de Oliveira, J.; Santos Pereira, V.; Pereira Alencar, L.; Bruna Leite Mendes, P.; Cibelle Soares Farias, B.; et al. Inhibitory Effect of a Lipopeptide Biosurfactant Produced by Bacillus Subtilis on Planktonic and Sessile Cells of Trichosporon Spp. Biofouling 2018, 34, 309–319. DOI: 10.1080/08927014.2018.1437617.
  • Bucci, A. R.; Marcelino, L.; Mendes, R. K.; Etchegaray, A. The Antimicrobial and Antiadhesion Activities of Micellar Solutions of Surfactin, CTAB and CPCL with Terpinen-4-Ol: Applications to Control Oral Pathogens. World. J. Microbiol. Biotechnol. 2018, 34, 86. DOI: 10.1007/s11274-018-2472-1.
  • Satpute, S. K.; Kulkarni, G. R.; Banpurkar, B. A. G.; Banat, I. M.; Mone, N. S.; Patil, R. H.; Cameotra, S. S. Biosurfactant/s from Lactobacilli Species: Properties, Challenges, and Potential Biomedical Applications. J. Basic Microbiol. 2016b, 56, 1140–1158. DOI: 10.1002/jobm.201600143.
  • Sun, W.; Wang, Y.; Zhang, W.; Ying, H.; Wang, P. Novel Surfactant Peptide for Removal of Biofilms. Colloids Surf. B Biointerfaces 2018, 172, 180–186. DOI: 10.1016/j.colsurfb.2018.08.029.
  • Pavithra, D.; Doble, M. Biofilm Formation, Bacterial Adhesion, and Host Response on Polymeric Implants - Issues and Prevention. Biomed. Mater. 2008, 3, 034003. DOI: 10.1088/1748-6041/3/3/034003.
  • Chetan, D. M.; Keerthana, S.; Prabhu, B. A.; Manjula, M.; Ranjit, S.; Ramesh, R.; Bhat, S. Biosurfactants: An Alternative to the Synthetic Surfactants and Their Production by Bacteria Isolated from Solid Waste. J. Pure Appl. Microbiol. 2018, 12, 1561–1567. DOI: 10.22207/JPAM.12.3.61.
  • Almeida, D. G.; Soares da Silva, R. C. F.; Luna, J. M.; Rufino, R. D.; Santos, V. A.; Sarubbo, L. A. Response Surface Methodology for Optimizing the Production of Biosurfactant by Candida tropicalis on Industrial Waste Substrates. Front. Microbiol. 2017, 8, 157. DOI: 10.3389/fmicb.2017.00157.
  • Rane, A. N.; Vishakha, V.; Baikar, V.; Kumar, R.; Deopurkar, R. L. Agro-Industrial Wastes for Production of Biosurfactant by Bacillus Subtilis Anr 88 and Its Application in Synthesis of Silver and Gold Nanoparticles. Front. Microbiol. 2017, 8, 492. DOI: 10.3389/fmicb.2017.00492.
  • Louhasakul, Y.; Cheirsilp, B.; Intasit, R.; Maneerat, S.; Saimmai, A. Enhanced Valorization of Industrial Wastes for Biodiesel Feed Stocks and Biocatalyst by Lipolytic Oleaginous Yeast and Biosurfactant-Producing Bacteria. Int. Biodeterior. Biodegrad. 2020, 148, 104911. DOI: 10.1016/j.ibiod.2020.104911.
  • Ciurko, D.; Czyżnikowska, Ż.; Kancelista, A.; Łaba, W.; Janek, T. Sustainable Production of Biosurfactant from Agro-Industrial Oil Wastes by Bacillus Subtilis and Its Potential Application as Antioxidant and Ace Inhibitor. IJMS 2022, 23, 10824. DOI: 10.3390/ijms231810824.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.