80
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Experimental investigation of emulsion formation and stability: Comparison of low salinity water and smart water effect

, , &
Pages 1646-1655 | Received 31 May 2022, Accepted 11 Jun 2023, Published online: 24 Jun 2023

References

  • Austad, T. Water-Based EOR in Carbonates and Sandstones: New Chemical Understanding of the EOR Potential Using “Smart Water. In Enhanced Oil Recovery Field Case Studies; Gulf Professional Publishing, 2013; pp 301–335.
  • Bennion, D.; Thomas, F.; Bietz, R.; Bennion, D. Water and Hydrocarbon Phase Trapping in Porous Media-Diagnosis, Prevention and Treatment. J. Can. Petroleum Technol. 1996, 35(10). DOI: 10.2118/96-10-02.
  • Mokheimer, E.; Hamdy, M.; Abubakar, Z.; Shakeel, M. R.; Habib, M. A.; Mahmoud, M. A Comprehensive Review of Thermal Enhanced Oil Recovery: Techniques Evaluation. J. Energy Resourc. Technol. 2019, 141(3). DOI: 10.1115/1.4041096.
  • Lashkarbolooki, M.; Riazi, M.; Hajibagheri, F.; Ayatollahi, S. Low Salinity Injection into Asphaltenic-Carbonate Oil Reservoir, Mechanistical Study. J. Mol. Liq. 2016, 216, 377–386. DOI: 10.1016/j.molliq.2016.01.051.
  • Yildiz, H. O.; Morrow, N. R. Effect of Brine Composition on Recovery of Moutray Crude Oil by Waterflooding. J. Petrol. Sci. Engin. 1996, 14, 159–168. DOI: 10.1016/0920-4105(95)00041-0.
  • RezaeiDoust, A.; Puntervold, T.; Strand, S.; Austad, T. Smart Water as Wettability Modifier in Carbonate and Sandstone: A Discussion of Similarities/Differences in the Chemical Mechanisms. Energy Fuels 2009, 23, 4479–4485. DOI: 10.1021/ef900185q.
  • Tang, G.-Q.; Morrow, N. R. Influence of Brine Composition and Fines Migration on Crude Oil/Brine/Rock Interactions and Oil Recovery. J. Petrol. Sci. Engin. 1999, 24, 99–111. DOI: 10.1016/S0920-4105(99)00034-0.
  • Strand, S.; Austad, T.; Puntervold, T.; Høgnesen, E. J.; Olsen, M.; Barstad, S. M. F. “Smart Water” for Oil Recovery from Fractured Limestone: A Preliminary Study. Energy Fuels 2008, 22, 3126–3133. DOI: 10.1021/ef800062n.
  • Zhang, P.; Austad, T. Wettability and Oil Recovery from Carbonates: Effects of Temperature and Potential Determining Ions. Colloids Surf, A. 2006, 279, 179–187. DOI: 10.1016/j.colsurfa.2006.01.009.
  • Winoto, W.; Loahardjo, N.; Xie, X. S.; Yin, P.; Morrow, N. R. 2012 Secondary and Tertiary Recovery of Crude Oil from Outcrop and Reservoir Rocks by Low Salinity Waterflooding. In SPE Improved Oil Recovery Symposium; OnePetro. DOI: 10.2118/154209-MS.
  • Tang, G.; Morrow, N. R. Salinity, Temperature, Oil Composition, and Oil Recovery by Waterflooding. SPE Reservoir Engin. 1997, 12, 269–276. DOI: 10.2118/36680-PA.
  • Kazemzadeh, Y.; Ismail, I.; Rezvani, H.; Sharifi, M.; Riazi, M. Experimental Investigation of Stability of Water in Oil Emulsions at Reservoir Conditions: Effect of Ion Type, Ion Concentration, and System Pressure. Fuel 2019, 243, 15–27. DOI: 10.1016/j.fuel.2019.01.071.
  • Kazemzadeh, Y.; Shojaei, S.; Riazi, M.; Sharifi, M. Review on Application of Nanoparticles for EOR Purposes: A Critical Review of the Opportunities and Challenges. Chin. J. Chem. Eng. 2019, 27, 237–246. DOI: 10.1016/j.cjche.2018.05.022.
  • Ayatollahi, S.; Zerafat, M. M. 2012 Nanotechnology-Assisted EOR Techniques: New Solutions to Old Challenges. In SPE International Oilfield Nanotechnology Conference and Exhibition; OnePetro. DOI: 10.2118/157094-MS.
  • Hezave, A. Z.; Dorostkar, S.; Ayatollahi, S.; Nabipour, M.; Hemmateenejad, B. Investigating the Effect of Ionic Liquid (1-Dodecyl-3-Methylimidazolium Chloride ([C12mim][Cl])) on the Water/Oil Interfacial Tension as a Novel Surfactant. Colloids Surf, A. 2013, 421, 63–71. DOI: 10.1016/j.colsurfa.2012.12.008.
  • Al-Yaari, M.; Hussein, I.; Al-Sarkhi, A.; Abbad, M.; Chang, F. Effect of Water Salinity on Surfactant-Stabilized Water–Oil Emulsions Flow Characteristics. Exp. Therm. Fluid Sci. 2015, 64, 54–61. DOI: 10.1016/j.expthermflusci.2015.02.001.
  • Borges, B.; Rondon, M.; Sereno, O.; Asuaje, J. Breaking of Water-in-Crude-Oil Emulsions. 3. Influence of Salinity and Water − Oil Ratio on Demulsifier Action. Energy Fuels 2009, 23, 1568–1574. DOI: 10.1021/ef8008822.
  • Kale, S. N.; Deore, S. L. Emulsion Micro Emulsion and Nano Emulsion: A Review. SRP. 2016, 8, 39–47. DOI: 10.5530/srp.2017.1.8.
  • Wong, S.; Lim, J.; Dol, S. Crude Oil Emulsion: A Review on Formation, Classification and Stability of Water-in-Oil Emulsions. J. Petrol. Sci. Engin. 2015, 135, 498–504. DOI: 10.1016/j.petrol.2015.10.006.
  • McAuliffe, C. D. Oil-in-Water Emulsions and Their Flow Properties in Porous Media. J. Petrol. Technol. 1973, 25, 727–733. DOI: 10.2118/4369-PA.
  • McAuliffe, C. D. Crude-Oil-Water Emulsions to Improve Fluid Flow in an Oil Reservoir. J. Petrol. Technol. 1973, 25, 721–726. DOI: 10.2118/4370-PA.
  • DeZabala, E.; Radke, C. A Nonequilibrium Description of Alkaline Waterflooding. SPE Reservoir Engin. 1986, 1, 29–43. DOI: 10.2118/11213-PA.
  • Ghannam, M. T. Water-in-Crude Oil Emulsion Stability Investigation. Pet. Sci. Technol. 2005, 23, 649–667. DOI: 10.1081/LFT-200033001.
  • Kumar, B. Effect of Salinity on the Interfacial Tension of Model and Crude Oil Systems. Master's thesis, Graduate Studies, 2012.
  • Ge, J.; Feng, A.; Zhang, G.; Jiang, P.; Pei, H.; Li, R.; Fu, X. Study of the Factors Influencing Alkaline Flooding in Heavy-Oil Reservoirs. Energy Fuels 2012, 26, 2875–2882. DOI: 10.1021/ef3000906.
  • Umar, A. A.; Saaid, I. B.; Sulaimon, A. A. Rheological and Stability Study of Water-in-Crude Oil Emulsions. In AIP Conference Proceedings (Vol. 1774, No. 1). AIP Publishing LLC, 2016.
  • Ling, N.; Haber, A.; Graham, B.; Aman, Z.; May, E.; Fridjonsson, E.; Johns, M. Quantifying the Effect of Salinity on Oilfield Water-in-Oil Emulsion Stability. Energy Fuels 2018, 32, 10042–10049. DOI: 10.1021/acs.energyfuels.8b02143.
  • Maaref, S.; Ayatollahi, S. The Effect of Brine Salinity on Water-in-Oil Emulsion Stability through Droplet Size Distribution Analysis: A Case Study. J. Dispersion Sci. Technol. 2018, 39, 721–733. DOI: 10.1080/01932691.2017.1386569.
  • Peng, J.; Tang, G.-Q.; Kovscek, A. R. 2008 Correlation of Cold Production Behavior with Acid/Base Number and Asphaltene Content of Heavy Oil. In SPE Western Regional and Pacific Section AAPG Joint Meeting; OnePetro. DOI: 10.2118/114196-MS.
  • Wang, X.; Alvarado, V. Effects of Aqueous-Phase Salinity on Water-in-Crude Oil Emulsion Stability. J. Dispersion Sci. Technol. 2012, 33, 165–170. DOI: 10.1080/01932691.2010.548689.
  • Maaref, S.; Ayatollahi, S.; Rezaei, N.; Masihi, M. The Effect of Dispersed Phase Salinity on Water-in-Oil Emulsion Flow Performance: A Micromodel Study. Ind. Eng. Chem. Res. 2017, 56, 4549–4561. DOI: 10.1021/acs.iecr.7b00432.
  • Lashkarbolooki, M.; Ayatollahi, S.; Riazi, M. The Impacts of Aqueous Ions on Interfacial Tension and Wettability of an Asphaltenic–Acidic Crude Oil Reservoir during Smart Water Injection. J. Chem. Eng. Data 2014, 59, 3624–3634. DOI: 10.1021/je500730e.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.