83
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Efficient and eco-friendly mixed bacterial consortium for petroleum wastewater treatment: Effect of the bio-augmentation and biosurfactant addition on hydrocarbon biodegradation

, , , , , , & show all
Pages 1691-1701 | Received 08 Mar 2023, Accepted 19 Jun 2023, Published online: 27 Jul 2023

References

  • Varjani, S.; Bajaj, A.; Purohit, H. J.; Kalia, V. Bioremediation and Circular Biotechnology. Indian J. Microbiol. 2021, 61, 235–236. DOI: 10.1007/s12088-021-00953-3.
  • Sattar, S.; Hussain, R.; Shah, S. M.; Bibi, S.; Ahmad, S. R.; Shahzad, A.; Zamir, A.; Rauf, Z.; Noshad, A.; Ahmad, L. Composition, Impacts, and Removal of Liquid Petroleum Waste through Bioremediation as an Alternative Clean-up Technology: A Review. Heliyon 2022, 8, e11101. DOI: 10.1016/j.heliyon.2022.e11101.
  • Alzahrani, A. M.; Rajendran, P. Petroleum Hydrocarbon and Living Organisms. In Hydrocarbon Pollution and Its Effect on the Environment. IntechOpen, 2019, 71–82.
  • Adedeji, J. A.; Tetteh, E. K.; Opoku Amankwa, M.; Asante-Sackey, D.; Ofori-Frimpong, S.; Armah, E. K.; Rathilal, S.; Mohammadi, A. H.; Chetty, M. Microbial Bioremediation and Biodegradation of Petroleum Products—A Mini Review. Appl. Sci. 2022, 12, 12212. DOI: 10.3390/app122312212.
  • Ossai, I. C.; Ahmed, A.; Hassan, A.; Hamid, F. S. Remediation of Soil and Water Contaminated with Petroleum Hydrocarbon: A Review. Environ. Technol. Innovat. 2020, 17, 100526. DOI: 10.1016/j.eti.2019.100526.
  • Borah, D.; Yadav, R. Bioremediation of Petroleum Based Contaminants with Biosurfactant Produced by a Newly Isolated Petroleum Oil Degrading Bacterial Strain. Egypt. J. Petrol. 2017, 26, 181–188. DOI: 10.1016/j.ejpe.2016.02.005.
  • Bhandari, S.; Poudel, D. K.; Marahatha, R.; Dawadi, S.; Khadayat, K.; Phuyal, S.; Shrestha, S.; Gaire, S.; Basnet, K.; Khadka, U.; Parajuli, N. Microbial Enzymes Used in Bioremediation. J. Chem. 2021, 2021, 1–17. DOI: 10.1155/2021/8849512.
  • Lukić, B.; Panico, A.; Huguenot, D.; Fabbricino, M.; van Hullebusch, E. D.; Esposito, G. Evaluation of PAH Removal Efficiency in an Artificial Soil Amended with Different Types of Organic Wastes. Environ. Sci. Pol. Res. 2016, 1, 1–11.
  • Patowary, K.; Patowary, R.; Kalita, M. C.; Deka, S. Development of an Efficient Bacterial Consortium for the Potential Remediation of Hydrocarbons from Contaminated Sites. Front. Microbiol. 2016, 7, 1092. DOI: 10.3389/fmicb.2016.01092.
  • Ren, X.; Zeng, G.; Tang, L.; Wang, J.; Wan, J.; Liu, Y.; Yu, J.; Yi, H.; Ye, S.; Deng, R. Sorption, Transport and Biodegradation–An Insight into Bioavailability of Persistent Organic Pollutants in Soil. Sci. Total Environ. 2018, 610–611, 1154–1163. DOI: 10.1016/j.scitotenv.2017.08.089.
  • Cipullo, S.; Negrin, I.; Claveau, L.; Snapir, B.; Tardif, S.; Pulleyblank, C.; Prpich, G.; Campo, P.; Coulon, F. Linking Bioavailability and Toxicity Changes of Complex Chemicals Mixture to Support Decision Making for Remediation Endpoint of Contaminated Soils. Sci. Total Environ. 2019, 650, 2150–2163. DOI: 10.1016/j.scitotenv.2018.09.339.
  • Cao, Z.; Yan, W.; Ding, M.; Yuan, Y. Construction of Microbial Consortia for Microbial Degradation of Complex Compounds. Front. Bioeng. Biotechnol. 2022, 10, 1051233. DOI: 10.3389/fbioe.2022.1051233.
  • Zhang, T.; Zhang, H. Microbial Consortia Are Needed to Degrade Soil Pollutants. Microorg 2022, 10, 261. DOI: 10.3390/microorganisms10020261.
  • Befkadu, A. A.; Quanyuan, C. Surfactant-Enhanced Soil Washing for Removal of Petroleum Hydrocarbons from Contaminated Soils: A Review. Pedos 2018, 28, 383–410. DOI: 10.1016/S1002-0160(18)60027-X.
  • Bolan, S.; Padhye, L. P.; Mulligan, C. N.; Alonso, E. R.; Saint-Fort, R.; Jasemizad, T.; Wang, C.; Zhang, T.; Rinklebe, J.; Wang, H.; et al. Surfactant-Enhanced Mobilization of Persistent Organic Pollutants: Potential for Soil and Sediment Remediation and Unintended Consequences. J. Hazard Mater. 2023, 443, 130189. DOI: 10.1016/j.jhazmat.2022.130189.
  • Badmus, S. O.; Amusa, H. K.; Oyehan, T. A.; Saleh, T. A. Environmental Risks and Toxicity of Surfactants: Overview of Analysis, Assessment, and Remediation Techniques. Environ. Sci. Pol. Res. 2021, 28, 62085–62104.
  • Johnson, P.; Trybala, A.; Starov, V.; Pinfield, V. J. Effect of Synthetic Surfactants on the Environment and the Potential for Substitution by Biosurfactants. Adv. Colloid Interface Sci. 2021, 288, 102340. DOI: 10.1016/j.cis.2020.102340.
  • Karlapudi, A. P.; Venkateswarulu, T.; Tammineedi, J.; Kanumuri, L.; Ravuru, B. K.; Ramu Dirisala, V.; Kodali, V. P. Role of Biosurfactants in Bioremediation of Oil Pollution-a Review. Petrol 2018, 4, 241–249. DOI: 10.1016/j.petlm.2018.03.007.
  • Zahed, M. A.; Matinvafa, M. A.; Azari, A.; Mohajeri, L. Biosurfactant, a Green and Effective Solution for Bioremediation of Petroleum Hydrocarbons in the Aquatic Environment. Discov. Wat. 2022, 2, 5. DOI: 10.1007/s43832-022-00013-x.
  • Khanpour-Alikelayeh, E.; Partovinia, A. Synergistic and Antagonistic Effects of Microbial co-Culture on Bioremediation of Polluted Environments. Microbial. Rejuvenat. Polym. Environ. 2021, 26, 229–265. DOI: 10.1007/978-981-15-7455-9.
  • Patowary, K.; Patowary, R.; Kalita, M. C.; Deka, S. Characterization of Biosurfactant Produced during Degradation of Hydrocarbons Using Crude Oil as Sole Source of Carbon. Front. Microbiol. 2017, 8, 279. DOI: 10.3389/fmicb.2017.00279.
  • Gudina, E. J.; Pereira, J. F.; Costa, R.; Coutinho, J. A.; Teixeira, J. A.; Rodrigues, L. R. Biosurfactant-Producing and Oil-Degrading Bacillus subtilis Strains Enhance Oil Recovery in Laboratory Sand-Pack Columns. J. Hazard Mater. 2013, 261, 106–113. DOI: 10.1016/j.jhazmat.2013.06.071.
  • Cheffi, M.; Hentati, D.; Chebbi, A.; Mhiri, N.; Sayadi, S.; Marqués, A. M.; Chamkha, M. Isolation and Characterization of a Newly Naphthalene-Degrading Halomonas pacifica, Strain Cnaph3: Biodegradation and Biosurfactant Production Studies. 3 Biotechnol 2020, 10, 89. DOI: 10.1007/s13205-020-2085-x.
  • Sharma, S.; Pandey, L. Production of Biosurfactant by Bacillus subtilis RSL-2 Isolated from Sludge and Biosurfactant Mediated Degradation of Oil. Bioresour. Technol. 2020, 307, 123261. DOI: 10.1016/j.biortech.2020.123261.
  • Joe, M. M.; Gomathi, R.; Benson, A.; Shalini, D.; Rengasamy, P.; Henry, A. J.; Truu, J.; Truu, M.; Sa, T. Simultaneous Application of Biosurfactant and Bioaugmentation with Rhamnolipid-Producing Shewanella for Enhanced Bioremediation of Oil-Polluted Soil. Appl. Sci. 2019, 9, 3773. DOI: 10.3390/app9183773.
  • Sharuddin, S. S. N.; Abdullah, S. R. S.; Hasan, H. A.; Othman, A. R.; Ismail, N. ‘I. Potential Bifunctional Rhizobacteria from Crude Oil Sludge for Hydrocarbon Degradation and Biosurfactant Production. Process Saf. Environ. Protect. 2021, 155, 108–121. DOI: 10.1016/j.psep.2021.09.013.
  • Lukić, B.; Huguenot, D.; Panico, A.; Fabbricino, M.; van Hullebusch, E. D.; Esposito, G. Importance of Organic Amendment Characteristics on Bioremediation of PAH-Contaminated Soil. Environ. Sci. Pollut. Res. Int. 2016, 23, 15041–15052. DOI: 10.1007/s11356-016-6635-z.
  • Mnif, I.; Ellouze‐Chaabouni, S.; Ayedi, Y.; Ghribi, D. Treatment of Diesel‐and Kerosene‐Contaminated Water by B. subtilis SPB1 Biosurfactant‐Producing Strain. Water Environ. Res. 2014, 86, 707–716. DOI: 10.2175/106143014x13975035525780.
  • Mnif, I.; Mnif, S.; Sahnoun, R.; Maktouf, S.; Ayedi, Y.; Ellouze-Chaabouni, S.; Ghribi, D. Biodegradation of Diesel Oil by a Novel Microbial Consortium: Comparison between co-Inoculation with Biosurfactant-Producing Strain and Exogenously Added Biosurfactants. Environ. Sci. Pollut. Res. Int. 2015, 22, 14852–14861. DOI: 10.1007/s11356-015-4488-5.
  • Mnif, I.; Sahnoun, R.; Ellouz-Chaabouni, S.; Ghribi, D. Application of Bacterial Biosurfactants for Enhanced Removal and Biodegradation of Diesel Oil in Soil Using a Newly Isolated Consortium. Process Saf. Environ. Protect. 2017, 109, 72–81. DOI: 10.1016/j.psep.2017.02.002.
  • Chebbi, A.; Jaoua, H.; Loukil, S.; Mhiri, N.; Ammar, N.; Sayadi, S.; Chamkha, M. Biodegradation of Malodorous Mercaptans by a Novel Staphylococcus capitis Strain Isolated from Gas-Washing Wastewaters of the Tunisian Chemical Group. Int. J. Environ. Sci. Technol. 2016, 13, 571–580. DOI: 10.1007/s13762-015-0897-8.
  • Afnor. Recueil De Normes Francaises Des Eaux: Méthodes D’essais. 1983.
  • Folch, J.; Lees, M.; Sloane Stanley, G. H. S. A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues. J. Biolog. Chem. 1957, 226, 497–509. DOI: 10.1016/S0021-9258(18)64849-5.
  • Alcantara, V. A.; Pajares, I. G.; Simbahan, J. F.; Edding, S. N. Downstream Recovery and Purification of a Bioemulsifier from Sacchromyces Cerevisiae 2031. Philippines Agric. Sci. 2014, 96, 349–359.
  • Arulazhagan, P.; Vasudevan, N. Role of a Moderately Halophilic Bacterial Consortium in the Biodegradation of Polyaromatic Hydrocarbons. Mar. Pollut. Bull. 2009, 58, 256–262. DOI: 10.1016/j.marpolbul.2008.09.017.
  • Mnif, I.; Ghribi, D. Review Lipopeptides Biosurfactants: Mean Classes and New Insights for Industrial, Biomedical, and Environmental Applications. Pep. Sci. 2015, 104, 129–147. DOI: 10.1002/bip.22630.
  • Hentati, D.; Chebbi, A.; Loukil, S.; Kchaou, S.; Godon, J.-J.; Sayadi, S.; Chamkha, M. Biodegradation of Fluoranthene by a Newly Isolated Strain of Bacillus stratosphericus from Mediterranean Seawater of the Sfax Fishing Harbour, Tunisia. Environ. Sci. Pollut. Res. Int. 2016, 23, 15088–15100. DOI: 10.1007/s11356-016-6648-7.
  • Zaghden, H.; Serbaji, M. M.; Saliot, A.; Sayadi, S. The Tunisian Mediterranean Coastline: Potential Threats from Urban Discharges Sfax-Tunisian Mediterranean Coasts. Desalinat. Wat. Treat. 2016, 57, 24765–24777. DOI: 10.1080/19443994.2016.1149107.
  • Kneese, A. V.; Schultze, C. L. Pollution, Prices, and Public Policy: A Study Sponsored Jointly by Resources for the Future, Inc. and the Brookings Institution. Brookings Institution, 1975, 125 pages.
  • Afzal, M.; Rehman, K.; Shabir, G.; Tahseen, R.; Ijaz, A.; Brix, H. Large-Scale Remediation of Oil-Contaminated Water Using Floating Treatment Wetlands. Npj Clean. Wat. 2019, 2, 3. DOI: 10.1038/s41545-018-0025-7.
  • Gatidou, G.; Drakou, E.-M.; Vyrides, I. Assessment of Bilge Water Degradation by Isolated Citrobacter sp. and Two Indigenous Strains and Identification of Organic Content by GC-MS. Water 2022, 14, 1350. DOI: 10.3390/w14091350.
  • Wang, D.; Lin, J.; Lin, J.; Wang, W.; Li, S. Biodegradation of Petroleum Hydrocarbons by Bacillus subtilis BL-27, a Strain with Weak Hydrophobicity. Molecules 2019, 24, 3021. DOI: 10.3390/molecules24173021.
  • Kong, X.; Dong, R.; King, T.; Chen, F.; Li, H. Biodegradation Potential of Bacillus sp. PAH-2 on PAHs for Oil-Contaminated Seawater. Molecules 2022, 27, 687. DOI: 10.3390/molecules27030687.
  • Sathishkumar, M.; Binupriya, A. R.; Baik, S. H.; Yun, S. E. Biodegradation of Crude Oil by Individual Bacterial Strains and a Mixed Bacterial Consortium Isolated from Hydrocarbon Contaminated Areas. Clean. Soil Air Water 2008, 36, 92–96. DOI: 10.1002/clen.200700042.
  • Muangchinda, C.; Rungsihiranrut, A.; Prombutara, P.; Soonglerdsongpha, S.; Pinyakong, O. 16S Metagenomic Analysis Reveals Adaptability of a mixed-PAH-Degrading Consortium Isolated from Crude Oil-Contaminated Seawater to Changing Environmental Conditions. J. Hazard Mater. 2018, 357, 119–127. DOI: 10.1016/j.jhazmat.2018.05.062.
  • Hentati, D.; Abed, R. M.; Abotalib, N.; El Nayal, A. M.; Ashraf, I.; Ismail, W. Biotreatment of Oily Sludge by a Bacterial Consortium: Effect of Bioprocess Conditions on Biodegradation Efficiency and Bacterial Community Structure. Front. Microbiol. 2022, 13, 998076. DOI: 10.3389/fmicb.2022.998076.
  • Yu, T.; Liu, X.; Ai, J.; Wang, J.; Guo, Y.; Liu, X.; He, X.; Deng, Z.; Jiang, Y. Microbial Community Succession during Crude Oil-Degrading Bacterial Enrichment Cultivation and Construction of a Degrading Consortium. Front. Microbiol. 2022, 13, 1044448. DOI: 10.3389/fmicb.2022.1044448.
  • Wijanarko, A.; Yuliani, H.; Hermansyah, H.; Sahlan, M. Isolation and Properties Characterization of Biosurfactant Synthesized by Pyrene Degrading Bacillus subtilis C19. J. Chem. Eng. 2012, 6, 889.
  • Jalilzadeh, Y. R.; Sekhavatjou, M.; Maktabi, P.; Arbab, S. N.; Khadivi, S.; Pourjafarian, V. The Biodegradation of Crude Oil by Bacillus subtilis Isolated from Contaminated Soil in Hot Weather Areas. Int. J. Environ. Res. 2014, 8, 509–514.
  • Owsianiak, M.; Chrzanowski, Ł.; Szulc, A.; Staniewski, J.; Olszanowski, A.; Olejnik-Schmidt, A. K.; Heipieper, H. Biodegradation of Diesel/Biodiesel Blends by a Consortium of Hydrocarbon Degraders: Effect of the Type of Blend and the Addition of Biosurfactants. Bioresour. Technol. 2009, 100, 1497–1500. DOI: 10.1016/j.biortech.2008.08.028.
  • Pacwa-Płociniczak, M.; Płaza, G. A.; Piotrowska-Seget, Z.; Cameotra, S. S. Environmental Applications of Biosurfactants: Recent Advances. Int. J. Mol. Sci. 2011, 12, 633–654. DOI: 10.3390/ijms12010633.
  • Mohanty, S.; Jasmine, J.; Mukherji, S. Practical Considerations and Challenges Involved in Surfactant Enhanced Bioremediation of Oil. Biomed. Res. Int. 2013, 2013, 328608. DOI: 10.1155/2013/328608.
  • Ji, W.; Abou Khalil, C.; Jayalakshmamma, M. P.; Zhao, L.; Boufadel, M. C. Behavior of Surfactants and Surfactant Blends in Soils during Remediation: A Review. Environ. Chal. 2021, 2, 100007. DOI: 10.1016/j.envc.2020.100007.
  • Kaczorek, E.; Pacholak, A.; Zdarta, A.; Smułek, W. The Impact of Biosurfactants on Microbial Cell Properties Leading to Hydrocarbon Bioavailability Increase. Col. Interf. 2018, 2, 35. DOI: 10.3390/colloids2030035.
  • Zhang, Y.; Zeng, Z.; Zeng, G.; Liu, X.; Liu, Z.; Chen, M.; Liu, L.; Li, J.; Xie, G. Effect of Triton X-100 on the Removal of Aqueous Phenol by Laccase Analyzed with a Combined Approach of Experiments and Molecular Docking. Colloids Surf. B Biointerfaces 2012, 97, 7–12. DOI: 10.1016/j.colsurfb.2012.04.001.
  • Atakpa, E. O.; Zhou, H.; Jiang, L.; Ma, Y.; Liang, Y.; Li, Y.; Zhang, D.; Zhang, C. Improved Degradation of Petroleum Hydrocarbons by Co-Culture of Fungi and Biosurfactant-Producing Bacteria. Chemos 2022, 290, 133337. DOI: 10.1016/j.chemosphere.2021.133337.
  • Gao, P.; Li, G.; Li, Y.; Li, Y.; Tian, H.; Wang, Y.; Zhou, J.; Ma, T. An Exogenous Surfactant-Producing Bacillus subtilis Facilitates Indigenous Microbial Enhanced Oil Recovery. Front. Microbiol. 2016, 7, 186. DOI: 10.3389/fmicb.2016.00186.
  • Guo, P.; Xu, W.-W.; Wei, D.-N.; Zhang, M.-X.; Zhang, J.; Tang, S.; Cao, B.-X.; Lin, J.-G.; Li, W. Potential Application of Biosurfactant-Producing Bacteria for Bioremediation of Oil Polluted Marine Intertidal Sediments. JMSE 2022, 10, 731. DOI: 10.3390/jmse10060731.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.