57
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effect of water saturation on CO2 minimum miscibility pressure and oil displacement performance

, , , , &
Pages 1793-1803 | Received 11 Jan 2023, Accepted 27 Jun 2023, Published online: 27 Oct 2023

References

  • Hawthorne, S. B.; Miller, D. J.; Jin, L.; Azzolina, N. A.; Hamling, J. A.; Gorecki, C. D. Lab and Reserve Study of Produced Hydrocarbon Molecular Weight Selectivity during CO2 Enhanced Oil Recovery. Energy Fuels. 2018, 32, 9070–9080. DOI: 10.1021/acs.energyfuels.8b01645.
  • Li, A.; Ren, X.; Fu, S.; Lv, J.; Li, X.; Liu, Y.; Lu, Y. The Experimental Study on the Flooding Regulations of Various CO2 Flooding Modes Implemented on Ultralow Permeability Cores. Trans. ASME, J. Energy Resour. Technol. 2018, 140, 241–246. DOI: 10.1115/1.4039319.
  • Du, M.; Sun, X.; Dai, C.; Li, H.; Wang, T.; Xu, Z.; Zhao, M.; Guan, B.; Liu, P. Laboratory Experience on a Toluene-Polydimethyl Silicone Thickened Supercritical Carbon Oxide Fractionating Fluid. J. Petroleum Sci. Eng. 2018, 166, 369–374. DOI: 10.1016/j.petrol.2018.03.039.
  • Lashkarbolooki, M.; Eftekhari, M. J.; Najimi, S.; Ayatollahi, S. Minimum Miscibility Pressure of CO2 and Crude Oil during CO2 Injection in the Reservoir. J. Supercrit. Fluids. 2017, 127, 121–128. DOI: 10.1016/j.supflu.2017.04.005.
  • Bian, X.-Q.; Han, B.; Du, Z.-M.; Jaubert, J.-N.; Li, M.-J. Integrating Support Vector Regression with Genetic Algorithm for CO2-Oil Minimum Miscibility Pressure (MMP) in Pure and Impure CO2 Streams. Fuel 2016, 182, 550–557. DOI: 10.1016/j.fuel.2016.05.124.
  • Lashgari, H. R.; Sun, A.; Zhang, T.; Pope, G. A.; Lake, L. W. Evaluation of Carbon Dioxide Storage and Miscible Gas EOR in Shale Oil Reserves. Fuel 2019, 241, 1223–1235. DOI: 10.1016/j.fuel.2018.11.076.
  • Khan, M.; Raza, A.; Zahoor, M. K.; Gholami, R. Feasibility of Miscible CO2 Flooding in Hydrocarbon Reservoirs with Different Crude Oil Compositions. J. Petrol Explor. Prod. Technol. 2020, 10, 2575–2585. DOI: 10.1007/s13202-020-00899-0.
  • Al-Bayati, D.; Saeedi, A.; Xie, Q.; Myers, M. B.; White, C. Influence of Permeability Heterogeneity on Miscible CO2 Flooding Efficiency in Sandstone Reserves: An Experimental Investigation. Transp. Porous Med. 2018, 125, 341–356. DOI: 10.1007/s11242-018-1121-3.
  • Mahdaviara, M.; Nait Amar, M.; Hemmati-Sarapardeh, A.; Dai, Z.; Zhang, C.; Xiao, T.; Zhang, X. Toward Smart Schemes for Modeling CO2 Solubility in Crude Oil: Application to Carbon Dioxide Enhanced Oil Recovery. Fuel. 2021, 285, 119147. DOI: 10.1016/j.fuel.2020.119147.
  • Chen, X.; Mohanty, K. K. Pore-Scale Mechanisms of Immiscible and Miscible Gas Injection in Fractured Carbates. Fuel. 2020, 275, 117909. DOI: 10.1016/j.fuel.2020.117909.
  • Vatandoost, A.; Khorsand Movaghar, M. R. Enhanced Method-of-Characteristic Approach for Determination of Minimum Miscibility Pressure in Displacements with Bifurcated Phase Behavior. Ind. Eng. Chem. Res. 2019, 58, 18397–18410. DOI: 10.1021/acs.iecr.9b03256.
  • Al-Mudhafar, W. J. From Core Flooding and Scaled Physical Model Experiences to Field-Scale Enhanced Oil Recovery Evaluations: Comprehensive Review of the Gas-Assisted Gravity Drainage Process. Energy Fuels. 2018, 32, 11067–11079. DOI: 10.1021/acs.energyfuels.8b01023.
  • Zhu, C.; Sheng, J. J.; Ettehadtavakkol, A.; Li, Y.; Gong, H.; Li, Z.; Dong, M. Numerical and Experimental Study of Enhanced Shale-Oil Recovery by CO2 Miscible Displacement with NMR. Energy Fuels. 2020, 34, 1524–1536. DOI: 10.1021/acs.energyfuels.9b03613.
  • He, C.; Fan, Z.; Zhang, C.; Xu, A.; Zhao, L.; Luo, E.; Zeng, X. A New Empirical Correlation of Minimum Miscibility Pressure for Produced Gas Reinjection. Energy Exploration & Exploitation 2020, 38, 867–883. DOI: 10.1177/0144598719898572.
  • Chen, M.; Cheng, L.; Cao, R.; Lyu, C.; Wang, D.; Wang, S.; Rao, X. Carbon Dioxide Transport in Radial Miscible Flooding in Consideration of Rate-Controlled Adsorption. Arab. J. Geosci. 2020, 13, 1–11. DOI: 10.1007/s12517-019-5041-5.
  • Mogensen, K. A Novel Protocol for Estimation of Minimum Miscibility Pressure from Slimtube Experiments. J. Petroleum Sci. Eng. 2016, 146, 545–551. DOI: 10.1016/j.petrol.2016.07.013.
  • Czarnota, R.; Janiga, D.; Stopa, J.; Wojnarowski, P. Determination of Minimum Miscibility Pressure for CO2 and Oil System Using Acoustically Monitored Separator. J. CO2 Util. 2017, 17, 32–36. DOI: 10.1016/j.jcou.2016.11.004.
  • Saeedi Dehaghani, A. H.; Soleimani, R. Prediction of CO2‐Oil Minimum Miscibility Pressure Using Soft Computing Methods. Chem. Eng. Technol. 2020, 43, 1361–1371. DOI: 10.1002/ceat.201900411.
  • Zhang, K.; Gu, Y. Two Different Technical Criteria for Determining the Minimum Miscibility Pressures (MMPs) from the Slim-Tube and Core Flood Tests. Fuel. 2015, 161, 146–156. DOI: 10.1016/j.fuel.2015.08.039.
  • Shyeh-Yung, J.-G. J. Mechanisms of Miscible Oil Recovery: Effects of Pressure on Miscible and Near-Miscible Displacements of Oil by Carbon Dioxide. Presented at SPE Annual Technical Conference and Exhibition, Dallas, Texas, 1991; SPE 22651. DOI: 10.2118/22651-MS.
  • Christiansen, R. L.; Haines, H. K. Rapid Measurement of Minimum Miscibility Pressure with the Rising-Bubble Apparatus. SPE Reser. Eng. 1987, 2, 523–527. DOI: 10.2118/13114-PA.
  • Zhang, K.; Jia, N.; Zeng, F. Application of Predicted Bubble-Rising Velocities for Estimating the Minimum Miscibility Pressures of the Light Crude Oil–CO2 Systems with the Rising Bubble Apparatus. Fuel. 2018, 220, 412–419. DOI: 10.1016/j.fuel.2018.01.100.
  • Rao, D. N. A New Technique of Vanishing Interfacial Tension for Miscibility Determination. Fluid Phase Equilib. 1997, 139, 311–324. DOI: 10.1016/s0378-3812(97)00180-5.
  • Ennin, E.; Grigg, R. B. CO2 Flooding and Minimum Miscibility Pressure Study in Texas Farnsworth Field. Presented at SPE Trinidad And Tobago Section Energy Resources Conference. Society of Petroleum Engineers, 2016. DOI: 10.2118/180854-MS.
  • Wang, H.; Tian, L.; Chai, X.; Wang, J.; Zhang, K. Effect of Pore Structure on Recovery of CO2 Miscible Flooding Efficiency in Low Permeability Reservoirs. J. Petroleum Sci. Eng. 2022, 208, 109305. DOI: 10.1016/j.petrol.2021.109305.
  • Zhao, Y.; Zhang, Y.; Lei, X.; Zhang, Y.; Song, Y. CO2 Flooding Enhanced Oil Recovery Evaluated Using Magnetic Resonance Imaging Technique. Energy. 2020, 203, 117878. DOI: 10.1016/j.energy.2020.117878.
  • Ding, M.; Yuan, F.; Wang, Y.; Xia, X.; Chen, W.; Liu, D. Oil Recovery from a CO2 Injection in Heterogeneous Reservoirs: The Influence of Permeability Heterogeneity, CO2-Oil Miscibility and Injection Pattern. J. Nat. Gas Sci. Eng. 2017, 44, 140–149. DOI: 10.1016/j.jngse.2017.04.015.
  • Bikkina, P.; Wan, J.; Kim, Y.; Kneafsey, T. J.; Tokunaga, T. K. Influence of Wettability and Permeability Heterogeneity on Miscible CO2 Flooding Efficiency. Fuel. 2016, 166, 219–226. DOI: 10.1016/j.fuel.2015.10.090.
  • Li, X.; Xue, J.; Wang, Y.; Yang, W.; Lu, J. Experimental Study of Oil Recovery from Pore of Different Sizes in Tight Sandstone Reservoirs during CO2 Flooding. J. Petroleum Sci. Eng. 2022, 208, 109740. DOI: 10.1016/j.petrol.2021.109740.
  • Xiao, P.; Yang, Z.; Wang, X.; Xiao, H.; Wang, X. Experimental Investigation on CO2 Injection in the Daqing Extra/Ultra-Low Permeability Reservoir. J. Petroleum Sci. Eng. 2017, 149, 765–771. DOI: 10.1016/j.petrol.2016.11.020.
  • Shiyi, Y.; Qiang, W.; Junshi, L.; et al. Technology Progress and Prospects of Enhanced Oil Recovery by Gas Injection. Acta Petrolei Sinica. 2020, 41, 1623. DOI: 10.7623/syxb202012014.
  • Sinha, U.; Dindoruk, B.; Soliman, M. Physics Guided Data-Driven Model to Estimate Minimum Miscibility Pressure (MMP) for Hydrocarbon Gases. Geoenergy Sci. Eng. 2023, 224, 211389. DOI: 10.1016/j.geoen.2022.211389.
  • Lei, T. Y. D. U. Z. S. U. N.; Zuhua, L. I. U. W. C. Influence of CO2 Dissolving in Formation Water on CO2 Flooding Process. Acta Petrolei Sinica. 2011, 32, 311. DOI: 10.7623/syxb201102019.
  • Cui, M.; Wang, R.; Lv, C.; Lun, Z.; Zhao, S.; Wang, Y.; Tang, Y. Research on Microscopic Oil Displacement Mechanism of CO2 EOR in Extra-High Water Cut Reservoirs. J. Pet. Sci. Eng. 2017, 154, 315–321. DOI: 10.1016/j.petrol.2017.04.006.
  • Liu, B.; Liu, W.; Pan, Z.; Yu, L.; Xie, Z.; Lv, G.; Zhao, P.; Chen, D.; Fang, W. Supercritical CO2 Breaking through a Water Bridge and Enhancing Shale Oil Recovery: A Molecular Dynamics Simulation Study. Energy Fuels. 2022, 36, 7558–7568. DOI: 10.1021/acs.energyfuels.2c01547.
  • Luo, Y.; Liu, X.; Xiao, H.; Zheng, T. Microscopic Production Characteristics of Tight Oil in the Nanopores of Different CO2-Affected Areas from Molecular Dynamics Simulations. Sep. Purif. Technol. 2023, 306, 122607. DOI: 10.1016/j.seppur.2022.122607.
  • Cao, M.; Gu, Y. Physicochemical Characterization of Produced Oils and Gases in Immiscible and Miscible CO2 Flooding Processes. Energy Fuels. 2013, 27, 440–453. DOI: 10.1021/ef301407k.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.