57
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Apparent molar volume, compressibility, and spectroscopic studies of ionic surfactants in aqueous solutions of antibiotic gemifloxacin

, , &
Pages 1931-1941 | Received 13 Apr 2023, Accepted 16 Jul 2023, Published online: 25 Jul 2023

References

  • Rolain, J. M.; Abat, C.; Jimeno, M. T.; Fournier, P. E.; Raoult, D. Do We Need New Antibiotics? Clin. Microbiol. Infect. 2016, 22, 408–415. DOI: 10.1016/j.cmi.2016.03.012.
  • Asghar, M. N.; Bisma, I.; Sohail, M.; Khan, A. M.; Rahman, H. M. A. U.; Nadeem, I. Spectroscopic, Conductivity and Voltammetric Investigations of Interaction of Sulfamethoxazole Alone and in Combination with Trimethoprim with Self-Assembled Structures. J. Dispersion Sci. Tech. 2022, 1–10. DOI: 10.1080/01932691.2022.2099415.
  • Cook, M. A.; Wright, G. D. The past, Present, and Future of Antibiotics. Sci. Transl. Med. 2022, 14, eabo7793. DOI: 10.1126/scitranslmed.abo7793.
  • Larsson, D. G. J.; Flach, C. F. Antibiotics Resistance in the Environment. Nat. Rev. Microbiol. 2022, 20, 257–269. DOI: 10.1038/s41579-021-00649-x.
  • Kohanski, M. A.; Dwyer, D. J.; Collins, J. J. How Antibiotics Kill Bacteria: From Targets to Networks. Nat. Rev. Microbiol. 2010, 8, 423–435. DOI: 10.1038/nrmicro2333.
  • Nikaido, H. Molecular Basis of Bacterial Outer Membrane Permeability Revisited. Microbiol. Mol. Biol. Rev. 2003, 67, 593–656. DOI: 10.1128/MMBR.67.4.593-656.2003.
  • Delcour, A. H. Outer Membrane Permeability and Antibiotic Resistance. Biochim. Biophys. Acta 2009, 1794, 808–816. DOI: 10.1016/j.bbapap.2008.11.005.
  • Ghai, I.; Ghai, S. Understanding Antibiotics Resistance via Outer Membrane Permeability Infect. Infect. Drug Resist. 2018, 11, 523–530. DOI: 10.2147/IDR.S156995.
  • Wisniewska-Becker, A.; Gruszecki, W. I. Biomembrane Model. Drug-Biomembrane Interaction Studies. The Application of Calorimetric Techniques; Pignatello, R., Ed., Woodhead Pub. Limit. 2013.
  • Garrec, D. L.; Ranger, M.; Leroux, J. C. Micelles in Anticancer Drug Delivery. Am. J. Drug Deliv. 2004, 2, 15–42. DOI: 10.2165/00137696-200402010-00002.
  • Florence, A. T.; Hussain, N. Transcytosis of Nanoparticles and Dendrimer Delivery Systems: Evolving Vistas. Adv. Drug Deliv. Rev. 2001, 50 Suppl 1, S69–S89. DOI: 10.1016/s0169-409x(01)00184-3.
  • Rub, M. A.; Azum, N.; Asiri, A. M. Interaction of Cationic Amphiphilic Drug Nortriptyline Hydrochloride with TX-100 in Aqueous and Urea Solutions and the Studies of Physicochemical Parameters of the Mixed Micelles. J. Mol. Liq. 2016, 218, 595–603. DOI: 10.1016/j.molliq.2016.02.049.
  • Mabrouk, M. M.; Hamed, N. A.; Mansour, F. R. Spectroscopic Methods for Determination of Critical Micelle Concentrations of Surfactants; a Comprehensive Review. Appl. Spectrosc. Rev. 2023, 58, 206–234. DOI: 10.1080/05704928.2021.1955702.
  • Shen, T.; Zhou, S.; Ruan, J.; Chen, X.; Liu, X.; Ge, X.; Qian, C. Recent Advances in Micellar Catalysis in Water. Adv. Colloid Interface Sci. 2021, 287, 102299. DOI: 10.1016/j.cis.2020.102299.
  • Kwiatkowski, A. L.; Molchanov, V. S.; Philippova, O. E. Polymer-Like Warmlike Micelles of Ionic Surfactants: Structure and Rheological Properties. Polym. Sci. Ser. A 2019, 61, 215–225. DOI: 10.1134/S0965545X19020081.
  • Pal, N.; Hoteit, H.; Mandal, A. Structural Aspects, Mechanisms and Emerging Prospects of Gemini Surfactant-Based Alternative Enhanced Oil Recovery Technology: A Review. J. Mol. Liq. 2021, 339, 116811. DOI: 10.1016/j.molliq.2021.116811.
  • Rasheed, T.; Shafi, S.; Bilal, M.; Hussain, T.; Sher, F.; Rizwan, K. Surfactant-Based Remediation as an Effective Approach for Removal of Environment Pollutants-A Review. J. Mol. Liq. 2020, 318, 113960. DOI: 10.1016/j.molliq.2020.113960.
  • Cao, H.; Hu, Y.; Xu, W.; Wang, Y.; Guo, X. Recent Progress in Assembly Behavior of Imidazolium-Based Ionic Surfactants. J. Mol. Liq. 2020, 319, 114354. DOI: 10.1016/j.molliq.2020.114354.
  • Khossravi, D. Drug-Surfactant Interactions: Effect on Transport Properties. Int. J. Pharm. 1997, 155, 179–190. DOI: 10.1016/S0378-5173(97)00162-2.
  • Naseem, B.; Sabri, A.; Hasan, A.; Shah, S. S. Interaction of Flavonoids within Organized Molecular Assemblies of Anionic Surfactant. Colloids Surf. B Biointerfaces 2004, 35, 7–13. DOI: 10.1016/j.colsurfb.2004.01.012.
  • Hopkins, E.; Sanvictores, T.; Sharma, S. Physiology, Acid Base Balance. [updated 2022 Sep 12]. In: Statpearls Internet]. Treasure Island (FL): Statpearls Publishing 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK507807/.
  • Krollik, K.; Lehmann, A.; Wagner, C.; Kaidas, J.; Kubas, H.; Weitschies, W. The Effect of Buffer Species on Biorelevant Dissolution and Precipitaion Assays - Comparison of Phosphate and Bicarbonate Buffer. Eur. J. Pharm. Biopharm. 2022, 171, 90–101. DOI: 10.1016/j.ejpb.2021.09.009.
  • Bhardwaj, V.; Bhardwaj, T.; Sharma, K.; Gupta, A.; Chauhan, S.; Cameotra, S. S.; Sharma, S.; Gupta, R.; Sharma, P. Drug-Surfactant Interactions: Thermo-Acoustic Investigation of Sodium Dodecyl Sulfate and Antimicrobial Drug (Levofloxacin) for Potential Pharmaceutical Application. RSC Adv. 2014, 4, 24935–24943. DOI: 10.1039/C4RA02177K.
  • Sohail, M.; Rahman, H. M. A. U.; Asghar, M. N.; Shaukat, S. Volumetric, Acoustic, Electrochemical and Spectroscopic Investigation of Norfloxacin-Ionic Surfactant Interactions. J. Mol. Liq. 2020, 318, 114179. DOI: 10.1016/j.molliq.2020.114179.
  • Siddiqui, S. A.; Rasheed, T.; Faisal, M.; Pandey, A. K.; Khan, S. B. Electronic Structure, Nonlinear Optical Properties, and Vibrational Analysis of Gemifloxacin by Density Functional Theory. J. Spectrosc 2012, 27, 185–206. DOI: 10.1155/2012/614710.
  • Lomesh, S. K.; Nathan, V.; Bala, M.; Thakur, P. Volumetric and Acoustic Methods for Investigating Molecular Interactions of Antibiotic Drug Doxycycline Hyclate in Water and in Aqueous Solution of Sodium Chloride and Potassium Chloride at Different Temperatures (293.15-313.15) K. J. Mol. Liq. 2019, 284, 241–251. DOI: 10.1016/j.molliq.2019.04.006.
  • Jamal, M. A.; Rashad, M.; Khosa, M. K.; Bhatti, I. A.; Zia, K. M. Solution Behavior and Sweetness Response of d-Mannitol at Different Temperatures. Food Chem. 2014, 153, 140–144. DOI: 10.1016/j.foodchem.2013.12.039.
  • Gurney, R. W. Ionic Processes in Solution, McGraw Hill: New York, 1953.
  • Frank, H. S.; Evans, M. W. Free Volume and Entropy in the Condensed Systems III. Entropy in Binary Mixtures; Partial Molal Entropy in Dilute Solutions; Structure and Thermodynamics in Aqueous Electrolytes. J. Chem. Phys. 1945, 13, 507–532. DOI: 10.1063/1.1723985.
  • Sohail, M.; Rahman, H. M. A. R.; Asghar, M. N. Gatifloxacin-Ionic Surfactant Interactions: Volumetric, Acoustic, Voltammetric, and Spectroscopic Studies. J. Surfactants Deterg. 2021, 24, 327–342. DOI: 10.1002/jsde.12480.
  • Liu, Q.; Ma, L.; Li, K.; Wang, J.; Zang, Y. Apparent Molar Volumes of Hydrophobic Imidazolium Type Ionic Liquids with Dimethyl Carbonate. J. Mol. Liq. 2020, 309, 113010. DOI: 10.1016/j.molliq.2020.113010.
  • Sharma, K.; Chauhan, S. Apparent Molar Volume, Compressibility and Viscometric Studies of Sodium Dodecyl Benzene Sulfonate (SDBS) and Dodecyltrimethylammonium Bromide (DTAB) in Aqueous Amino Solutions: A Thermoacoustic Approach. Thermochim. Acta 2014, 578, 15–27. DOI: 10.1016/j.tca.2013.12.021.
  • Rajagopal, K.; Jayabalakrishnan, S. S. Ultrasonic Studies of 4-Aminobutyric Acid in Aqueous Metformin Hydrochloride Solutions at Different Temperatures. Int. J. Thermophys. 2010, 31, 2225–2238. DOI: 10.1007/s10765-010-0862-1.
  • Santosh, M. S.; Bhat, D. K.; Bhat, A. S. Molecular Interactions in Glycylglycine-MnCl2 Aqueous Solutions at (288.15, 293.15, 289.15, 303.15, 308.15, 313.15, and 318.15) K. J. Chem. Eng. Data 2009, 54, 2813–2818. DOI: 10.1021/je800732f.
  • Mehrotra, K. N.; Jain, M. Viscometric and Ultrasonic Studies on Chromium Soap Solutions. J. Chem. Eng. Data 1995, 40, 91–95. DOI: 10.1021/je00017a020.
  • Pandey, J. D.; Sanguri, V.; Yadav, M. K.; Singh, A. Intermolecular Free Length and Free Volume of Pure Liquids at Varying Temperatures and Pressures. Indian J. Chem. 2008, 47, 1020–1025.
  • Sohail, M.; Rahman, H. M. A. U.; Nadeem, M. N. Thermo-Acoustic, Spectroscopic, and Electrochemical Investigation of Sparfloxacin-Ionic Surfactant Interactions. J. Mol. Liq. 2021, 340, 117186. DOI: 10.1016/j.molliq.2021.117186.
  • Hassun, S. K. Ultrasonic Studies of Molecular Association of Aqueous Solutions of Poly(Vinyl Alcohol). a Method to Determine Molecular Weight. Europ. Polym. J. 1988, 24, 795–797. DOI: 10.1016/0014-3057(88)90017-1.
  • Chauhan, S.; Sharma, K. Extended Studies on Molecular Interactions of SDBS and DTAB in Aqueous Solutions of Amino Acid at T = 293.15-313.15 K. J. Mol. Liq. 2015, 211, 675–685. DOI: 10.1016/j.molliq.2015.08.003.
  • Lin, C. E.; Wang, T.; Chiu, T. C.; Hsueh, C. C. Determination of Critical Micelle Concentration of Cationic Surfactants by Capillary Electrophoresis. J. High Resol. Chromatogr. 1999, 22, 265–270. DOI: 10.1002/(SICI)1521-4168(19990501)22:5<265::AID-JHRC265>3.0.CO;2-B.
  • Fuguet, E.; Rafols, C.; Roses, M.; Bosch, E. Critical Micelle Concentration of Micelle of Surfactants in Aqueous Buffered and Unbuffered Systems. Anal. Chim. Acta 2005, 548, 95–100. DOI: 10.1016/j.aca.2005.05.069.
  • Hanif, S.; Usman, M.; Hussain, I.; Rasool, N.; Zubair, M.; Rana, U. A. Solubilization of Benzothiazole (BNZ) by Micellar Media of Sodium Dodecyl Sulphate and Cetyltrimethylammonium Bromide. J. Mol. Liq. 2015, 211, 7–14. DOI: 10.1016/j.molliq.2015.06.018.
  • Usman, M.; Rashid, M. A.; Mansha, A.; Siddiq, M. Thermodynamic Solution Properties of Pefloxacin Mesylate and Its Interactions with Organized Assemblies of Anionic Surfactant Dodecyl Sulphate. Thermochim. Acta 2013, 573, 18–24. DOI: 10.1016/j.tca.2013.08.014.
  • Muniz, G. S. V.; Teixeira, L. R.; Louro, S. R. W. Interaction of Antibiotic Norfloxacin with Ionic Micelles: PH Dependent Binding. Eur. Biophys. J. 2014, 43, 477–483. DOI: 10.1007/s00249-014-0978-5.
  • Nazar, M. F.; Shah, S. S.; Khosa, M. A. Interaction of Azo Dye with Cationic Surfactant under Different pH Conditions. J. Surfact. Deterg. 2010, 13, 529–537. DOI: 10.1007/s11743-009-1177-8.
  • Sortino, S. Selective Entrapment of the Cationic Form of Norfloxacin within Anionic Sodium Dodecyl Sulphate Micelles at Physiological pH and Its Impact on the Drug Photodecomposition. Photochem. Photobiol. 2006, 82, 64–70. DOI: 10.1562/2005-06-01-RA-560.
  • Nazar, M. F.; Mukhtar, F.; Chaudry, S.; Ashfaq, M.; Mehmood, S.; Asif, A.; Rana, U. A. Biophysical Probing of Antibacterial Gemifloxacin Assimilated in Surfactant Mediated Molecular Assemblies. J. Mol. Liq. 2014, 200, 361–368. DOI: 10.1016/j.molliq.2014.11.007.
  • Kawamura, H.; Manabe, M.; Miyamoto, Y.; Fujita, Y.; Tokunaga, S. Partition Coefficient of Homologous. Omega.-Phenylalkanols between Water and Sodium Dodecyl Sulphate Micelles. J. Phys. Chem. 1989, 93, 5536–5540. DOI: 10.1021/j100351a042.
  • Benesi, H. A.; Hildebrand, J. H. A Spectroscopic Investigation of the Interaction of Iodine with Aromatic Hydrocarbons. J. Am. Chem. Soc. 1949, 71, 2703–2707. DOI: 10.1021/ja01176a030.
  • Amin, M. R.; Rub, M. A.; Shah, A. H.; Kumar, D.; Rahman, M. M.; Hoque, M. A.; Kabir, M.; Asiri, A. M.; Kabir, S. E. Phase Separation and Conductivity Studies on the Interaction of Promethazine Hydrochloride Drug with Cationic and Anionic Surfactants: Influence of Electrolyte and Temperature. J. Mol. Liq. 2022, 359, 119325. DOI: 10.1016/j.molliq.2022.119325.
  • Correa Soto, C. E.; Gao, Y.; Indulkar, A. S.; Ueda, K.; Zhang, G. G. Z.; Taylor, L. S. Impact of Surfactants on the Performance of Clopidogrel-Copovidone Amorphous Solid Dispersions: Increase Drug Loading and Stabilizing of Nanodroplets. Pharm. Res. 2022, 39, 167–188. DOI: 10.1007/s11095-021-03159-w.
  • Islam, M. Z.; Krajewska, M.; Hossain, S. I.; Prochaska, K.; Anwar, A.; Deplazes, E.; Saha, S. C. Concentration-Dependent Effect of Steroid Drug Prednisolone on a Lung Surfactant Monolayer. Langmuir 2022, 38, 4188–4199. DOI: 10.1021/acs.langmuir.1c02817.
  • Enache, M.; Volanschi, E. Spectral Study of the Molecular Interaction of Anticancer Drug Mitoxantrone with CTAB Micelles. J. Pharm. Sci. 2011, 100, 558–565. DOI: 10.1002/jps.22289.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.