85
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Experimental investigation on the stability of foam using combination of anionic and zwitterionic surfactants: A screening scenario to obtain optimum compound

, , &
Pages 2016-2027 | Received 14 Jun 2023, Accepted 30 Jul 2023, Published online: 10 Aug 2023

References

  • Tang, J.; Ansari, M. N.; Rossen, W. R. Quantitative Modeling of the Effect of Oil on Foam for Enhanced Oil Recovery. SPEJ. 2019, 24, 1057–1075. DOI: 10.2118/194020-PA.
  • Afifi, H. R.; Mohammadi, S.; Mirzaei Derazi, A.; Moradi, S.; Mahmoudi Alemi, F.; Hamed Mahvelati, E.; Fouladi Hossein Abad, K. A Comprehensive Review on Critical Affecting Parameters on Foam Stability and Recent Advancements for Foam-Based EOR Scenario. J. Mol. Liq. 2021, 116808. DOI: 10.1016/j.molliq.2021.116808.
  • Davarpanah, A. A Feasible Visual Investigation for Associative Foam>⧹Polymer Injectivity Performances in the Oil Recovery Enhancement. Eur. Polym. J. 2018, 105, 405–411. DOI: 10.1016/j.eurpolymj.2018.06.017.
  • Alcorn, Z. P.; Fredriksen, S. B.; Sharma, M.; Fernø, M. A.; Graue, A. CO2 Foam EOR Field Pilot-Pilot Design, Geologic and Reservoir Modeling, and Laboratory Investigations. IOR 2017 – 19th European Sympo. Improved Oil Recovery. 2017, 2017, 1–20. DOI: 10.3997/2214-4609.201700240.
  • Al-Mudhafar, W. J.; Al-Maliki, A. K.; Al-Tameemi, A.; Al-Attar, A.; Al-Ameri, R. H.; Hosseini-Nasab, S. M. Field-Scale Evaluation of Re-Injecting the Associated Gas to Enhance the Recovery of Oil through the GAGD Process: A Prospective Pilot Project in a Southern Iraqi Oil Field. SPE EOR Conference Oil and Gas West Asia, 2018, DOI: 10.2118/190355-MS.
  • Rabbani, S.; Abderrahmane, H.; Sassi, M. Investigation of Enhanced Oil Recovery with the Upscaled Three Phase Flow Model in an Oil Reservoir. SPE Gas & Oil Technology Showcase Conference Dubai, UAE, 2019. DOI: 10.2118/198575-MS.
  • Lee, W.; Lee, S.; Izadi, M.; Kam, S. I. Dimensionality-Dependent Foam Rheological Properties: How to Go from Linear to Radial Geometry for Foam Modeling and Simulation. SPEJ. 2016, 21, 1669–1687. DOI: 10.2118/175015-PA.
  • Skauge, A.; Solbakken, J.; Ormehaug, P. A.; Aarra, M. G. Foam Generation, Propagation and Stability in Porous Medium. Transp. Porous Med. 2020, 131, 5–21. DOI: 10.1007/s11242-019-01250-w.
  • Hirasaki, G. J.; Lawson, J. B. Mechanisms of Foam Flow in Porous Media: Apparent Viscosity in Smooth Capillaries. SPE J. 1985, 25, 176–190. DOI: 10.2118/12129-PA.
  • Friedmann, F.; Chen, W. H.; Gauglitz, P. A. Experimental and Simulation Study of High-Temperature Foam Displacement in Porous Media. SPE Res. Eng. 1991, 6, 37–45. DOI: 10.2118/17357-PA.
  • Abbaszadeh, M.; Varavei, A.; Rodríguez Garza, F.; Pino, A. E.; Salinas, J. L.; Puerto, M. C.; Hirasaki, G. J.; Miller, C. A. Methodology for the Development of Laboratory–Based Comprehensive Foam Model for Use in the Reservoir Simulation of Enhanced Oil Recovery. SPE Res. Eval. Eng. 2018, 21, 344–363. DOI: 10.2118/181732-PA.
  • Grimstad, A. A.; Bergmo, P. E. S.; Barrabino, A.; Holt, T. Modelling of CO2-Foam Core Flooding Experiments. Proceedings of the 15th Greenhouse Gas Control Technologies Conference. 2021; pp 15–18. DOI: 10.2139/ssrn.3816402.
  • Jafari, M.; Cao, S. C.; Jung, J. Geological CO2 Sequestration in Saline Aquifers: Implication on Potential Solutions of China’s Power Sector. Resour. Conserv. Recycl. 2017, 121, 137–155. DOI: 10.1016/j.resconrec.2016.05.014.
  • Enick, R. M.; Olsen, D.; Ammer, J.; Schuller, W. Mobility and Conformance Control for CO2 EOR via Thickeners, Foams, and Gels – A Literature Review of 40 Years of Research and Pilot Tests. SPE Improved Oil Recovery Symposium, Tulsa, Oklahoma, USA, 2012. DOI: 10.2118/154122-MS.
  • Ma, K.; Ren, G.; Mateen, K.; Morel, D.; Cordelier, P. Modeling Techniques for Foam Flow in Porous Media. SPE J. 2015, 20, 453–470. DOI: 10.2118/169104-PA.
  • Rattanaudom, P.; Shiau, B. J.; Suriyapraphadilok, U.; Charoensaeng, A. Effect of pH on Silica Nanoparticle-Stabilized Foam for Enhanced Oil Recovery Using Carboxylate-Based Extended Surfactants. J. Pet. Sci. Eng. 2021, 196, 107729. DOI: 10.1016/j.petrol.2020.107729.
  • Gauglitz, P.; Friedmann, F.; Kam, S.; Rossen, W. Foam Generation in Homogeneous Porous Media. Chem. Eng. Sci. 2002, 57, 4037–4052. DOI: 10.1016/S0009-2509(02)00340-8.
  • Bergeron, V. Forces and Structure in Thin Liquid Soap Films. J. Phys.: Condens. Matter. 1999, 11, R215–R238. DOI: 10.1088/0953-8984/11/19/201.
  • Israelachvili, J. N.; Wennerstroem, H. Entropic Forces between Amphiphilic Surfaces in Liquids. J. Phys. Chem. 1992, 96, 520–531. DOI: 10.1021/j100181a007.
  • Sun, Q.; Zhou, Z.-H.; Xiao, C.-M.; Gao, M.; Han, L.; Liu, Q.-C.; Zhang, L.; Zhang, Q.; Zhang, L. The Synergism of Improving Interfacial Properties between Betaine and Crude Oil for Enhanced Oil Recovery. J. Mol. Liq. 2023, 383, 122046. DOI: 10.1016/j.molliq.2023.122046.
  • Razavi, S.; Shahmardan, M.; Nazari, M.; Norouzi, M. Experimental Study of the Effects of Surfactant Material and Hydrocarbon Agent on Foam Stability with the Approach of Enhanced Oil Recovery. Colloids Surf. A: Physicochem. Eng. 2020, 585, 124047. DOI: 10.1016/j.colsurfa.2019.124047.
  • Shokrollahi, A.; Ghazanfari, M. H.; Badakhshan, A. Application of Foam Floods for Enhancing Heavy Oil Recovery through Stability Analysis and Core Flood Experiments. Can. J. Chem. Eng. 2014, 92, 1975–1987. DOI: 10.1002/cjce.22044.
  • Hunter, T. N.; Pugh, R. J.; Franks, G. V.; Jameson, G. J. The Role of Particles in Stabilising Foams and Emulsions. Adv. Colloid Interf. Sci. 2008, 137, 57–81. DOI: 10.1016/j.cis.2007.07.007.
  • Liu, Q.; Qu, H.; Liu, S.; Zhang, Y.; Zhang, S.; Liu, J.; Peng, B.; Luo, D. Modified Fe3O4 Nanoparticle Used for Stabilizing Foam Flooding for Enhanced Oil Recovery. Colloids Surf. A: Physicochem. Eng. 2020, 605, 125383. DOI: 10.1016/j.colsurfa.2020.125383.
  • Zhao, J.; Torabi, F.; Yang, J. The Synergistic Role of Silica Nanoparticle and Anionic Surfactant on the Static and Dynamic CO2 Foam Stability for Enhanced Heavy Oil Recovery: An Experimental Study. Fuel. 2021, 287, 119443. DOI: 10.1016/j.fuel.2020.119443.
  • Qajar, A.; Xue, Z.; Worthen, A. J.; Johnston, K. P.; Huh, C.; Bryant, S. L.; Prodanović, M. Modeling Fracture Propagation and Cleanup for Dry Nanoparticle-Stabilized-Foam Fracturing Fluids. J. Pet. Sci. Eng. 2016, 146, 210–221. DOI: 10.1016/j.petrol.2016.04.008.
  • Kumar, S.; Mandal, A. Investigation on Stabilization of CO2 Foam by Ionic and Nonionic Surfactants in Presence of Different Additives for Application in Enhanced Oil Recovery. App. Surf. Sci. 2017, 420, 9–20. DOI: 10.1016/j.apsusc.2017.05.126.
  • Ortiz, D.; Izadi, M.; Kam, S. I. Modeling of Nanoparticle-Stabilized CO2 Foam Enhanced Oil Recovery. SPE. Res. Eval. Eng. 2019, 22, 971–989. DOI: 10.2118/194018-PA.
  • Zargartalebi, M.; Kharrat, R.; Barati, N. Enhancement of Surfactant Flooding Performance by the Use of Silica Nanoparticles. Fuel. 2015, 143, 21–27. DOI: 10.1016/j.fuel.2014.11.040.
  • Afifi, H. R.; Mohammadi, S.; Derazi, A. M.; Alemi, F. M. Enhancement of Smart Water-Based Foam Characteristics by SiO2 Nanoparticles for EOR Applications. Colloids Surf. A: Physicochem. Eng. 2021, 627, 127143. DOI: 10.1016/j.colsurfa.2021.127143.
  • Rafati, R.; Oludara, O. K.; Sharifi Haddad, A.; Hamidi, H. Experimental Investigation of Emulsified Oil Dispersion on Bulk Foam Stability. Colloids Surf. A: Physicochem. Eng. 2018, 554, 110–121. DOI: 10.1016/j.colsurfa.2018.06.043.
  • Bashir, A.; Sharifi Haddad, A.; Rafati, R. Nanoparticle/Polymer-Enhanced Alpha Olefin Sulfonate Solution for Foam Generation in the Presence of Oil Phase at High Temperature Conditions. Colloids Surf. A: Physicochem. Eng. 2019, 582, 123875. DOI: 10.1016/j.colsurfa.2019.123875.
  • Manan, M.; Farad, S.; Piroozian, A.; Esmail, M. Effects of Nanoparticle Types on Carbon Dioxide Foam Flooding in Enhanced Oil Recovery. Pet. Sci. Technol. 2015, 33, 1286–1294. DOI: 10.1080/10916466.2015.1057593.
  • Harati, S.; Bayat, A. E.; Sarvestani, M. T. Assessing the Effects of Different Gas Types on Stability of SiO2 Nanoparticle Foam for Enhanced Oil Recovery Purpose. J. Mol. Liq. 2020, 313, 113521. DOI: 10.1016/j.molliq.2020.113521.
  • Manlowe, D. J.; Radke, C. J. A Pore-Level Investigation of Foam/Oil Interactions in Porous Media. SPE. Res. Eng. 1990, 5, 495–502. DOI: 10.2118/18069-PA.
  • Qu, C.; Wang, J.; Yin, H.; Lu, G.; Li, Z.; Feng, F. Condensate Oil-Tolerant Foams Stabilized by an Anionic–Sulfobetaine Surfactant Mixture. ACS Omega. 2019, 4, 1738–1747. DOI: 10.1021/acsomega.8b02325.
  • Wang, H.; Liu, J.; Yang, Q.; Wang, Y.; Li, S.; Sun, S.; Hu, S. Study on the Influence of the External Conditions and Internal Components on Foam Performance in Gas Recovery. Chem. Eng. Sci. 2021, 231, 116279. DOI: 10.1016/j.ces.2020.116279.
  • Roncoroni, M.; Romero, P.; Montes, J.; Bascialla, G.; Rodríguez, R.; Pons-Esparver, R. R.; Mazadiego, L. F.; García-Mayoral, M. F. Enhancement of a Foaming Formulation with a Zwitterionic Surfactant for Gas Mobility Control in Harsh Reservoir Conditions. Pet. Sci. 2021, 18, 1409–1426. DOI: 10.1016/j.petsci.2021.08.004.
  • Li, C.; Wang, Z.; Wang, W.; Zhu, H.; Sun, S.; Hu, S. Temperature and Salt Resistant CO2 Responsive Gas Well Foam: Experimental and Molecular Simulation Study. App. Surf. Sci. 2022, 594, 153431. DOI: 10.1016/j.apsusc.2022.153431.
  • Xiao, Z.; Dexin, L.; Yue, L.; Lulu, L.; Jie, Y. Synergistic Effects between Anionic and Amphoteric Surfactants on Promoting Spontaneous Imbibition in Ultra-Low Permeability Reservoirs: Study of Mechanism and Formula Construction. Colloids Surf. A: Physicochem. Eng. 2021, 625, 126930. DOI: 10.1016/j.colsurfa.2021.126930.
  • Pendleton, N. S.; Smith, C. D. Foamers for Unloading High-Condensate Gas Wells. Patent US20160040056A1, 2018.
  • Danov, K. D.; Kralchevska, S. D.; Kralchevsky, P. A.; Ananthapadmanabhan, K. P.; Lips, A. Mixed Solutions of Anionic and Zwitterionic Surfactant (Betaine): Surface-Tension Isotherms, Adsorption, and Relaxation Kinetics. Langmuir. 2004, 20, 5445–5453. DOI: 10.1021/la049576i.
  • Basheva, E. S.; Ganchev, D.; Denkov, N. D.; Kasuga, K.; Satoh, N.; Tsujii, K. Role of Betaine as Foam Booster in the Presence of Silicone Oil Drops. Langmuir. 2000, 16, 1000–1013. DOI: 10.1021/la990777+.
  • Osei-Bonsu, K.; Shokri, N.; Grassia, P. Foam Stability in the Presence and Absence of Hydrocarbons: From Bubble-to Bulk-Scale. Colloids Surf. A: Physicochem. Eng. 2015, 481, 514–526. DOI: 10.1016/j.colsurfa.2015.06.023.
  • Andrianov, A.; Farajzadeh, R.; Mahmoodi Nick, M.; Talanana, M.; Zitha, P. L. Immiscible Foam for Enhancing Oil Recovery: Bulk and Porous Media Experiments. Ind. Eng. Chem. Res. 2012, 51, 2214–2226. DOI: 10.1021/ie201872v.
  • Xu, Z.; Li, Z.; Cui, S.; Li, B.; Zhang, Q.; Zheng, L.; Husein, M. M. Assessing the Performance of Foams Stabilized by Anionic/Nonionic Surfactant Mixture under High Temperature and Pressure Conditions. Colloids Surf, A. 2022, 651, 129699. DOI: 10.1016/j.colsurfa.2022.129699.
  • Li, R. F.; Hirasaki, G. J.; Miller, C. A.; Masalmeh, S. K. Wettability Alteration and Foam Mobility Control in a Layered, 2D Heterogeneous Sandpack. SPE J .2012, 17, 1207–1220. DOI: 10.2118/141462-PA.
  • Farajzadeh, R.; Andrianov, A.; Krastev, R.; Hirasaki, G.; Rossen, W. R. Foam-Oil Interaction in Porous Media: Implications for Foam Assisted Enhanced Oil Recovery. SPE EOR Conference at Oil and Gas West Asia, Muscat, Oman, 2012. DOI: 10.2118/154197-MS.
  • Han, W.; Fan, J.; Lv, H.; Yan, Y.; Liu, C.; Dong, S. Excellent Foaming Properties of Anionic-Zwitterionic-Gemini Cationic Compound Surfactants for Gas Well Deliquification: Experimental and Computational Investigations. Colloids Surf. A: Physicochem. Eng. 2022, 653, 129944. DOI: 10.1016/j.colsurfa.2022.129944.
  • Emami, H.; Ayatizadeh Tanha, A.; Khaksar Manshad, A.; Mohammadi, A. H. Experimental Investigation of Foam Flooding Using Anionic and Nonionic Surfactants: A Screening Scenario to Assess the Effects of Salinity and pH on Foam Stability and Foam Height. ACS Omega. 2022, 7, 14832–14847. DOI: 10.1021/acsomega.2c00314.
  • Hosseini-Nasab, S.; Douarche, F.; Nabzar, L.; Simjoo, M.; Bourbiaux, B.; Roggero, F. Integrated Method for Numerical Simulation of Foam Flooding in Porous Media in the Absence and Presence of Oil. SPE EOR Conference at Oil and Gas West Asia, Muscat, Oman, 2018. DOI: 10.2118/190479-MS.
  • Clogston, J. D.; Patri, A. K. In Characterization of Nanoparticles Intended for Drug Delivery; Scott E. McNeil, Ed. Humana Press: New Jersey, 2011; pp 63–70. DOI: 10.1007/978-1-60327-198-1.
  • Andrianov, A.; Farajzadeh, R.; Nick, M. M.; Talanana, M.; Zitha, P. L. Immiscible Foam for Enhancing Oil Recovery: Bulk and Porous Media Experiments. SPE Enhanced Oil Recovery Conference, Kuala Lumpur, Malaysia, 2011. DOI: 10.2118/143578-MS.
  • Schramm, L.; Wassmuth, F. Foams: Basic Principles. In Foams: Fundamentals and Applications in the Petroleum Industry; L. L. Schramm, Ed. Advances in Chemistry Series: Washington, DC, 1994; pp 3–45. DOI: 10.1021/ba-1994-0242.ch001.
  • Vikingstad, A. K.; Skauge, A.; Høiland, H.; Aarra, M. Foam–Oil Interactions Analyzed by Static Foam Tests. Colloids Surf. A: Physicochem. Eng. 2005, 260, 189–198. DOI: 10.1016/j.colsurfa.2005.02.034.
  • Simjoo, M.; Rezaei, T.; Andrianov, A.; Zitha, P. Foam Stability in the Presence of Oil: Effect of Surfactant Concentration and Oil Type. Colloids Surf. A: Physicochem. Eng. 2013, 438, 148–158. DOI: 10.1016/j.colsurfa.2013.05.062.
  • Farzaneh, S. A.; Sohrabi, M. Experimental Investigation of CO2-Foam Stability Improvement by Alkaline in the Presence of Crude Oil. Chem. Eng. Res. Des. 2015, 94, 375–389. DOI: 10.1016/j.cherd.2014.08.011.
  • Ueno, M.; et al. Practical Chemistry of Long-Lasting Bubbles. World. J. Chem. Educ. 2016, 4, 32–44. DOI: 10.12691/wjce-4-2-2.
  • Panthi, K.; Sotomayor, M.; Balhoff, M. T.; Mohanty, K. K. Low Retention Surfactant-Polymer Process for a HTHS Carbonate Reservoir. J. Pet. Sci. Eng. 2022, 214, 110516. DOI: 10.1016/j.petrol.2022.110516.
  • Hirahara, F.; Koshimizu, T.; Suzuki, T.; Ikezawa, Y.; Suzuki, N.; Usui, T. Studies on the Modified Foam Stability Test. Effects of Blood and Meconium and Comparison with Clements’ Shake Test. Diagn. Gynecol. Obstet. 1981, 3, 9–14.
  • Hadian Nasr, N.; Mahmood, S. M.; Akbari, S.; Hematpur, H. A Comparison of Foam Stability at Varying Salinities and Surfactant Concentrations Using Bulk Foam Tests and Sandpack Flooding. J. Petrol Explor. Prod. Technol. 2020, 10, 271–282. DOI: 10.1007/s13202-019-0707-9.
  • Hutzler, S.; Lösch, D.; Carey, S.; Weaire, D.; Hloucha, M.; Stubenrauch, C. Evaluation of a Steady-State Test of Foam Stability. Philos. Mag. 2011, 91, 537–552. DOI: 10.1080/14786435.2010.526646.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.