72
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Unmodified and rGO-modified Zn/Al layered double hydroxides; nanoadsorbents employed for the solid phase extraction/HPLC determination of naproxen

, ORCID Icon, , & ORCID Icon
Pages 2060-2070 | Received 06 Apr 2023, Accepted 05 Aug 2023, Published online: 20 Aug 2023

References

  • Ho, K. Y.; Gwee, K. A.; Cheng, Y. K.; Yoon, K. H.; Hee, H. T.; Omar, A. R. Nonsteroidal anti-Inflammatory Drugs in Chronic Pain: Implications of New Data for Clinical Practice. J. Pain Res. 2018, 11, 1937–1948. DOI: 10.2147/JPR.S168188.
  • Wehling, M. Non-Steroidal anti-Inflammatory Drug Use in Chronic Pain Conditions with Special Emphasis on the Elderly and Patients with Relevant Comorbidities: Management and Mitigation of Risks and Adverse Effects. Eur. J. Clin. Pharmacol. 2014, 70, 1159–1172. DOI: 10.1007/s00228-014-1734-6.
  • Wong, R. S. Y. Role of Nonsteroidal anti-Inflammatory Drugs (NSAIDs) in Cancer Prevention and Cancer Promotion. Adv. Pharmacol. Sci. 2019, 2019, 3418975. DOI: 10.1155/2019/3418975.
  • Liu, F.; Nielsen, A. H.; Vollertsen, J. Sorption and Degradation Potential of Pharmaceuticals in Sediments from a Stormwater Retention Pond. Water 2019, 11, 526. DOI: 10.3390/w11030526.
  • Xu, C.; Niu, L.; Guo, H.; Sun, X.; Chen, L.; Tu, W.; Dai, Q.; Ye, J.; Liu, W.; Liu, J. Long-Term Exposure to the Non-Steroidal anti-Inflammatory Drug (NSAID) Naproxen Causes Thyroid Disruption in Zebrafish at Environmentally Relevant Concentrations. Sci. Total Environ. 2019, 676, 387–395. DOI: 10.1016/j.scitotenv.2019.04.323.
  • Wojcieszyńska, D.; Guzik, U. Naproxen in the Environment: Its Occurrence, Toxicity to Nontarget Organisms and Biodegradation. Appl. Microbiol. Biotechnol. 2020, 104, 1849–1857. DOI: 10.1007/s00253-019-10343-x.
  • Jallouli, N.; Elghniji, K.; Hentati, O.; Ribeiro, A. R.; Silva, A. M.; Ksibi, M. UV and Solar Photo-Degradation of Naproxen: TiO2 Catalyst Effect, Reaction Kinetics, Products Identification and Toxicity Assessment. J. Hazard. Mater. 2016, 304, 329–336. DOI: 10.1016/j.jhazmat.2015.10.045.
  • Ma, D.; Liu, G.; Lv, W.; Yao, K.; Zhang, X.; Xiao, H. Research P. Photodegradation of Naproxen in Water under Simulated Solar Radiation: Mechanism, Kinetics, and Toxicity Variation. Environ. Sci. Pollut. Res. Int. 2014, 21, 7797–7804. DOI: 10.1007/s11356-014-2721-2.
  • Yilmaz, S.; Saglikoglu, G.; Sadikoglu, M.; Tonguc Yayintas, Ö.; Yanik, S. Voltammetric and Chromatographic Determination of Naproxen in Drug Formulation. JSP 2019, 3, 299–310. DOI: 10.26900/jsp.3.031.
  • Gouda, A. A.; Kotb El-Sayed, M. I.; Amin, A. S.; El Sheikh, R. Spectrophotometric and Spectrofluorometric Methods for the Determination of Non-Steroidal anti-Inflammatory Drugs: A Review. Arab. J. Chem. 2013, 6, 145–163. DOI: 10.1016/j.arabjc.2010.12.006.
  • Hendawy, H. A.; Salem, W. M.; Abd-Elmonem, M. S.; Khaled, E. Nanomaterial-Based Carbon Paste Electrodes for Voltammetric Determination of Naproxen in Presence of Its Degradation Products. J. Anal. Methods Chem. 2019, 2019, 5381031. DOI: 10.1155/2019/5381031.
  • Elsinghorst, P. W.; Kinzig, M.; Rodamer, M.; Holzgrabe, U.; Sörgel, F. An LC-MS/MS Procedure for the Quantification of Naproxen in Human Plasma: Development, Validation, Comparison with Other Methods, and Application to a Pharmaco Kinetic Study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011, 879, 1686–1696. DOI: 10.1016/j.jchromb.2011.04.012.
  • Shirinnejad, M.; Sarrafi, A. H. Dispersive Liquid-Liquid Microextraction Based on Solidification of Floating Organic Drop with Central Composite Design for the Spectrofluorometric Determination of Naproxen. J. Fluoresc. 2019, 29, 1039–1047. DOI: 10.1007/s10895-019-02417-w.
  • Román-Hidalgo, C.; Dvořák, M.; Kubáň, P.; Martín-Valero, M. J.; Bello-López, M. Á. Direct Capillary Electrophoresis Analysis of Basic and Acidic Drugs from Microliter Volume of Human Body Fluids after Liquid-Phase Microextraction through Nano-Fibrous Membrane. Anal. Bioanal. Chem. 2020, 412, 181–191. DOI: 10.1007/s00216-019-02225-y.
  • Gautam, R. K.; Singh, A. K.; Tiwari, I. Nanoscale Layered Double Hydroxide Modified Hybrid Nanomaterials for Wastewater Treatment: A Review. J. Mol. Liq. 2022, 350, 118505. DOI: 10.1016/j.molliq.2022.118505.
  • Soylak, M.; Ozalp, O.; Uzcan, F. Magnetic Nanomaterials for the Removal, Separation and Preconcentration of Organic and Inorganic Pollutants at Trace Levels and Their Practical Applications: A Review. Trends Environ. Anal. Chem. 2021, 29, e00109. DOI: 10.1016/j.teac.2020.e00109.
  • Dolatyari, L.; Yaftian, M. R.; Rostamnia, S.; Seyeddorraji, M. S. Multivariate Optimization of a Functionalized SBA-15 Mesoporous Based Solid-Phase Extraction for U(VI) Determination in Water Samples. Anal. Sci. 2017, 33, 769–776. DOI: 10.2116/analsci.33.769.
  • Jakavula, S.; Biata, N. R.; Dimpe, K. M.; Pakade, V. E.; Nomngongo, P. N. A Critical Review on the Synthesis and Application of Ion-Imprinted Polymers for Selective Preconcentration, Speciation, Removal and Determination of Trace and Essential Metals from Different Matrices. Crit. Rev. Anal. Chem. 2022, 52, 314–326. DOI: 10.1080/10408347.2020.1798210.
  • Nouri, N.; Khorram, P.; Sereshti, H. Applications of Three-Dimensional Graphenes for Preconcentration, Extraction, and Sorption of Chemical Species: A Review. Microchim. Acta 2019, 186, 1–14. DOI: 10.1007/s00604-019-3324-x.
  • Dong, Y.; Kong, X.; Luo, X.; Wang, H. Adsorptive Removal of Heavy Metal Anions from Water by Layered Double Hydroxide: A Review. Chemosphere 2022, 303, 134685. DOI: 10.1016/j.chemosphere.2022.134685.
  • Gao, X.; Wang, P.; Pan, Z.; Claverie, J. P.; Wang, J. Recent Progress in Two‐Dimensional Layered Double Hydroxides and Their Derivatives for Supercapacitors. ChemSusChem 2020, 13, 1226–1254. DOI: 10.1002/cssc.201902753.
  • Sohrabi, A.; Yaftian, M. R.; Dolatyari, L.; Seyyed Dorraji, M. S.; Soheili-Azad, P. Application of Mg–Al and Zn–Al Layered Double Hydroxides Modified with Sodium Dodecyl Benzene Sulfonate as a Solid Sorbent for Removal of Diazinon from Water Samples. J. Iran Chem. SOC 2020, 17, 1411–1427. DOI: 10.1007/s13738-020-01866-6.
  • Abbasi, Z.; Dolatyari, L.; Soheili-Azad, P.; Seyyed Dorraji, M. S.; Yaftian, M. R. Solid Phase Extraction of Diazinon Using SDBS Modified Mg/Al Layerd Double Hydroxide. Environ. Eng. Manag. J. 2022, 21, 1351–1361. DOI: 10.30638/eemj.2022.120.
  • Soheili-Azad, P.; Yaftian, M. R.; Seyyed Dorraji, M. S. Application of Zinc/Aluminum Layered Double Hydroxide Nanosorbent in a Fixed-Bed Column for SPE-Preconcentration Followed by HPLC Determination of Diclofenac in Biological and Hospital Wastewater Samples. Microchem. J. 2019, 148, 270–276. DOI: 10.1016/j.microc.2019.05.008.
  • Nia, S. B.; Pooresmaeil, M.; Namazi, H. Carboxymethylcellulose/Layered Double Hydroxides Bio-Nanocomposite Hydrogel: A Controlled Amoxicillin Nanocarrier for Colonic Bacterial Infections Treatment. Int. J. Biol. Macromol. 2020, 155, 1401–1409. DOI: 10.1016/j.ijbiomac.2019.11.115.
  • Hu, T.; Gu, Z.; Williams, G. R.; Strimaite, M.; Zha, J.; Zhou, Z.; Zhang, X.; Tan, C.; Liang, R. Layered Double Hydroxide-Based Nanomaterials for Biomedical Applications. Chem. Soc. Rev. 2022, 51, 6126–6176. DOI: 10.1039/d2cs00236a.
  • Jing, G.; Yang, L.; Wang, H.; Niu, J.; Li, Y.; Wang, S. Interference of Layered Double Hydroxide Nanoparticles with Pathways for Biomedicine Applications. Adv. Drug Deliv. Rev. 2022, 188, 114451. DOI: 10.1016/j.addr.2022.114451.
  • Shirin, V. A.; Sankar, R.; Johnson, A. P.; Gangadharappa, H. V.; Pramod, K. Advanced Drug Delivery Applications of Layered Double Hydroxide. J. Control Release 2021, 330, 398–426. DOI: 10.1016/j.jconrel.2020.12.041.
  • Constantino, V. R.; Figueiredo, M. P.; Magri, V. R.; Eulálio, D.; Cunha, V. R.; Alcântara, A. C.; Perotti, G. F. Biomaterials Based on Organic Polymers and Layered Double Hydroxides Nanocomposites: Drug Delivery and Tissue Engineering. Pharmaceutics 2023, 15, 413. DOI: 10.3390/pharmaceutics15020413.
  • Fan, G.; Li, F.; Evans, D. G.; Duan, X. Catalytic Applications of Layered Double Hydroxides: Recent Advances and Perspectives. Chem. Soc. Rev. 2014, 43, 7040–7066. DOI: 10.1039/c4cs00160e.
  • Rui, J.; Deng, N.; Zhao, Y.; Tao, C.; Zhou, J.; Zhao, Z.; Huang, X. Activation of Persulfate via Mn Doped Mg/Al Layered Double Hydroxide for Effective Degradation of Organics: Insights from Chemical and Structural Variability of Catalyst. Chemosphere 2022, 302, 134849. DOI: 10.1016/j.chemosphere.2022.134849.
  • Mkaddem, H.; Rosales, E.; Pazos, M.; Amor, H. B.; Sanromán, M. A.; Meijide, J. Anti-Inflammatory Drug Diclofenac Removal by a Synthesized MgAl Layered Double Hydroxide. J. Mol. Liq. 2022, 359, 119207. DOI: 10.1016/j.molliq.2022.119207.
  • Tang, S.; Yao, Y.; Chen, T.; Kong, D.; Shen, W.; Lee, H. K. Recent Advances in the Application of Layered Double Hydroxides in Analytical Chemistry: A Review. Anal. Chim. Acta 2020, 1103, 32–48. DOI: 10.1016/j.aca.2019.12.065.
  • Soheili-Azad, P.; Yaftian, M. R.; Seyyed Dorraji, M. S. Zn/Al-Layered Double Hydroxide–Graphene Oxide Nanocomposite Use in the Solid-Phase Extraction–Preconcentration and HPLC Determination of Diclofenac. Chem. Pap. 2020, 74, 4419–4432. DOI: 10.1007/s11696-020-01252-9.
  • Baig, N.; Sajid, M. Applications of Layered Double Hydroxides Based Electrochemical Sensors for Determination of Environmental Pollutants: A Review. Trends Environ. Anal. Chem. 2017, 16, 1–15. DOI: 10.1016/j.teac.2017.10.003.
  • Munyemana, J. C.; Chen, J.; Han, Y.; Zhang, S.; Qiu, H. A Review on Optical Sensors Based on Layered Double Hydroxides Nanoplatforms. Microchim. Acta 2021, 188, 1–9. DOI: 10.1007/s00604-021-04739-8.
  • Ghani, M.; Haghdoostnejad, K. Woven Cotton Yarn-Graphene Oxide-Layered Double Hydroxide Composite as a Sorbent for Thin Film Microextraction of Nonsteroidal anti-Inflammatory Drugs Followed by Quantitation through High Performance Liquid Chromatography. Anal. Chim. Acta 2020, 1097, 94–102. DOI: 10.1016/j.aca.2019.10.066.
  • Ghani, M.; Ghoreishi, S. M.; Azamati, M. Magnesium-Aluminum-Layered Double Hydroxide-Graphene Oxide Composite Mixed-Matrix Membrane for the Thin-Film Microextraction of Diclofenac in Biological Fluids. J. Chromatogr. A 2018, 1575, 11–17. DOI: 10.1016/j.chroma.2018.09.024.
  • Mei, X.; Yan, Q.; Lu, P.; Wang, J.; Cui, Y.; Nie, Y.; Umar, A.; Wang, Q. Synthesis of Pt/K2CO3/MgAlOx–Reduced Graphene Oxide Hybrids as Promising NOx Storage–Reduction Catalysts with Superior Catalytic Performance. Sci. Rep. 2017, 7, 42862. DOI: 10.1038/srep42862.
  • Hidayah, N.; Liu, W. W.; Lai, C. W.; Noriman, N.; Khe, C. S.; Hashim, U.; Lee, H. C. Comparison on Graphite, Graphene Oxide and Reduced Graphene Oxide: Synthesis and Characterization. In: AIP Conference Proceedings. AIP Publishing LLC; 2017, p. 150002.
  • Vasseghian, Y.; Sezgin, D.; Nguyen, D. C.; Hoang, H. Y.; Yilmaz, M. S. A Hybrid Nanocomposite Based on CuFe Layered Double Hydroxide Coated Graphene Oxide for Photocatalytic Degradation of Trimethoprim. Chemosphere 2023, 322, 138243. DOI: 10.1016/j.chemosphere.2023.138243.
  • Ray, S. C. Application and Uses of Graphene Oxide and Reduced Graphene Oxide. In Applications of Graphene and Graphene-Oxide Based Nanomaterials. William Andrew. 2015, vol. 6, pp. 39–55.
  • Varadwaj, G. B. B.; Oyetade, O. A.; Rana, S.; Martincigh, B. S.; Jonnalagadda, S. B.; Nyamori, V. O. Facile Synthesis of Three-Dimensional Mg–Al Layered Double Hydroxide/Partially Reduced Graphene Oxide Nanocomposites for the Effective Removal of Pb2+ from Aqueous Solution. ACS Appl. Mater. Interfaces 2017, 9, 17290–17305. DOI: 10.1021/acsami.6b16528.
  • Solangi, A.; Memon, S.; Mallah, A.; Memon, N.; Khuhawar, M. Y.; Bhanger, M. I. Determination of Ceftriaxone, Ceftizoxime, Paracetamol, and Diclofenac Sodium by Capillary Zone Electrophoresis in Pharmaceutical Formulations and in Human Blood Serum. Turk. J. Chem. 2010, 34, 921–933. DOI: 10.3906/kim-1005-628.
  • Abdolmohammad-Zadeh, H.; Morshedzadeh, F.; Rahimpour, E. Trace Analysis of Mefenamic Acid in Human Serum and Pharmaceutical Wastewater Samples after Pre-Concentration with Ni–Al Layered Double Hydroxide Nano-Particles. J. Pharm. Anal. 2014, 4, 331–338. DOI: 10.1016/j.jpha.2014.04.003.
  • Tan, L.; Wang, Y.; Liu, Q.; Wang, J.; Jing, X.; Liu, L.; Liu, J.; Song, D. Enhanced Adsorption of Uranium(VI) Using a Three-Dimensional Layered Double Hydroxide/Graphene Hybrid Material. Chem. Eng. J. 2015, 259, 752–760. DOI: 10.1016/j.cej.2014.08.015.
  • Dmitrienko, S.; Gurariy, E. Y.; Nosov, R.; Zolotov, Y. A. Solid-Phase Extraction of Polycyclic Aromatic Hydrocarbons from Aqueous Samples Using Polyurethane Foams in Connection with Solid-Matrix Spectrofluorimetry. Anal. Lett. 2001, 34, 425–438. DOI: 10.1081/AL-100102584.
  • Kuzawa, K.; Jung, Y. J.; Kiso, Y.; Yamada, T.; Nagai, M.; Lee, T. G. Phosphate Removal and Recovery with a Synthetic Hydrotalcite as an Adsorbent. Chemosphere 2006, 62, 45–52. DOI: 10.1016/j.chemosphere.2005.04.015.
  • Chiaia, A. C.; Banta-Green, C.; Field, J. Eliminating Solid Phase Extraction with Large-Volume Injection LC/MS/MS: Analysis of Illicit and Legal Drugs and Human Urine Indicators in US Wastewaters. Environ. Sci. Technol. 2008, 42, 8841–8848. DOI: 10.1021/es802309v.
  • Aresta, A.; Palmisano, F.; Zambonin, C. G. Determination of Naproxen in Human Urine by Solid-Phase Microextraction Coupled to Liquid Chromatography. J. Pharm. Biomed. Anal. 2005, 39, 643–647. DOI: 10.1016/j.jpba.2005.04.017.
  • Yilmaz, B.; Asci, A.; Erdem, A. F. HPLC Method for Naproxen Determination in Human Plasma and Its Application to a Pharmacokinetic Study in Turkey. J. Chromatogr. Sci. 2014, 52, 584–589. DOI: 10.1093/chromsci/bmt080.
  • Mahmood, D.; Fatih-Alla, T. A Novel Approach for Spectrophotometric Determination of Naproxen. Int. J. Pharm. Res. 2020, 2, 1473–1480.
  • Rafighi, P.; Yaftian, M. R.; Haghighi, B. Magnetic Nanofibrous Polyaniline Nanocomposite for Solid-Phase Extraction of Naproxen from Biological Samples Prior to Its Spectrofluorimetric Determination. J. Iran Chem. SOC 2018, 15, 1209–1221. DOI: 10.1007/s13738-018-1319-x.
  • Akawa, M. N.; Dimpe, K. M.; Nomngongo, P. N. Ultrasonic Assisted Magnetic Solid Phase Extraction Based on the Use of Magnetic Waste-Tyre Derived Activated Carbon Modified with Methyltrioctylammonium Chloride Adsorbent for the Preconcentration and Analysis of Non-Steroidal anti-Inflammatory Drugs in Wastewater. Arab. J. Chem. 2021, 14, 103329. DOI: 10.1016/j.arabjc.2021.103329.
  • Li, W.; Huang, L.; Guo, D.; Zhao, Y.; Zhu, Y. Self-Assembling Covalent Organic Framework Functionalized Poly (Styrene-Divinyl Benzene-Glycidylmethacrylate) Composite for the Rapid Extraction of Non-Steroidal anti-Inflammatory Drugs in Wastewater. J. Chromatogr. A 2018, 1571, 76–83. DOI: 10.1016/j.chroma.2018.08.019.
  • Martinez-Sena, T.; Armenta, S.; de la Guardia, M.; Esteve-Turrillas, F. A. Determination of Non-Steroidal anti-Inflammatory Drugs in Water and Urine Using Selective Molecular Imprinted Polymer Extraction and Liquid Chromatography. J. Pharm. Biomed. Anal. 2016, 131, 48–53. DOI: 10.1016/j.jpba.2016.08.006.
  • Madikizela, L. M.; Chimuka, L. Determination of Ibuprofen, Naproxen and Diclofenac in Aqueous Samples Using a Multi-Template Molecularly Imprinted Polymer as Selective Adsorbent for Solid-Phase Extraction. J. Pharm. Biomed. Anal. 2016, 128, 210–215. DOI: 10.1016/j.jpba.2016.05.037.
  • Caro, E.; Marcé, R. M.; Cormack, P. A.; Sherrington, D. C.; Borrull, F. A New Molecularly Imprinted Polymer for the Selective Extraction of Naproxen from Urine Samples by Solid-Phase Extraction. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2004, 813, 137–143. DOI: 10.1016/j.jchromb.2004.09.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.