216
Views
1
CrossRef citations to date
0
Altmetric
Reviews of Science for Science Librarians

Reviews of Science for Science Librarians: Microbes that Make Biofuels and Work within Fuel Cells

REFERENCES

  • Banerjee, G., S. Car, J. S. Scott-Craig, M. S. Borrusch, and J. D. Walton. 2010. Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations. Biotechnology for Biofuels 3: 22. doi:10.1186/1754-6834-3-22
  • Bengelsdorf, F. R., U. Gerischer, S. Langer, M. Zak, and M. Kazda. 2013. Stability of a biogas-producing bacterial, archaeal and fungal community degrading food residues. FEMS Microbiology Ecology 84 (1): 201–12. doi:10.1111/1574-6941.12055
  • Biondi, N., N. Bassi, G. C. Zitelli, D. DeFaveri, A. Giovannini, L. Rodolfi, C. Allevi, C. Macri, and M. R. Tredici. 2013. Nannochloropsis sp. F&M-M24: Oil production, effect of mixing on productivity and growth in an industrial wastewater. Environmental Progress & Sustainable Energy 32 (3): 846–53. doi:10.1002/ep.11681
  • Blumer-Schuette, S. E., I. Kataeva, J. Westpheling, M. W. W. Adams, and R. M. Kelly. 2008. Extremely thermophilic microorganisms for biomass conversion: Status and prospects. Current Opinion in Biotechnology 19 (3): 210–17. doi:10.1016/j.copbio.2008.04.007
  • Bokinsky, G., P. P. Peralta-Yahya, A. George, B. M. Holmes, E. J. Steen, J. Dietrich, T. S. Lee, D. Tullman-Ercek, C. A. Voigt, B. A. Simmons, and J. D. Keasling. 2011. Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 108 (50): 19949–54. doi:10.1073/pnas.1106958108
  • Bozell, J. J., and G. R. Petersen. 2010. Technology development for the production of biobased products from biorefinery carbohydrates—The U.S. Department of Energy’s “Top 10” revisited. Green Chemistry 12 (4): 539–54. doi:10.1039/b922014c
  • Bullen, R. A., T. C. Arnot., J. B. Lakeman, and F. C. Walsh. 2006. Biofuel cells and their development. Biosensors & Bioelectronics 21 (11): 2015–45. doi:10.1016/j.bios.2006.01.030
  • Cai, D., T. Zhang, J. Zheng, Z. Chang, P. Y. Qin, and T. W. Tan. 2013. Biobutanol from sweet sorghum bagasse hydrolysate by a hybrid pervaporation process. Bioresource Technology 145: 97–102 doi:10.1016/j.biortech.2013.02.094
  • Carmona-Martínez, A. A., F. Harnisch, U.Kulicke, T. R. Neu, and U. Schroeder. 2013. Electron transfer and biofilm formation of Shewanella putrefaciens as a function of anode potential. Bioelectrochemistry 93 ( Special Issue I): S23–S29. doi:10.1016/j.bioelechem.2012.05.002
  • Carter, C. A., and H. I. Miller. 2012. Corn for food, not fuel. The New York Times, July 30, www.nytimes.com/2012/07/31/opinion/corn-for-foodnotfuel.html.
  • Cendrowski, S. 2012. The food-fuel dilemma. Fortune 165 (2): 12.
  • Chen, C. Y., Z. Q. Zhao, H. W. Wen, S. H. Ho, C. L. Cheng, D. J. Lee, F. W. Bai, and J. S. Chang. 2013. Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal 78 ( Special Issue): SI1–SI10. doi:10.1016/j.bej.2013.03
  • Cheng, X. Y., and C. Z. Liu. 2012. Fungal pretreatment enhances hydrogen production via thermophilic fermentation of cornstalk. Applied Energy 91 (1): 1–6. doi:10.1016/j.apenergy.2011.09.014
  • Chirag, K. S., and B. N. Yagnik. 2013. Bioelectricity production using microbial fuel cell. Research Journal of Biotechnology 8 (3): 84–90.
  • Cianchetta, S., S. Galletti, P. L. Burzi, and C. Cerato. 2012. Hydrolytic potential of Trichoderma ssp. strains evaluated by microplate-based screening followed by switchgrass saccharification. Enzyme and Microbial Technology 50 (6–7): 304–10. doi:10.1016/j.enzmictec.2012.02.005
  • Clomburg, J. M., and R. González. 2010. Biofuel production in Escherichia coli: The role of metabolic engineering and synthetic biology. Applied Microbiology and Biotechnology 86 (2): 419–34. doi:10.1007/s00253-010-2446-1
  • Conrad, R. 2009. The global methane cycle: Recent advances in understanding the microbial processes involved. Environmental Microbiology Reports 1 (5): 285–92.
  • Cushion, E., A. Whiteman, and G. Dieterle. 2010. Bioenergy development: Issues and impacts for poverty and natural resource management. World Bank. https://openknowledge.worldbank.org/handle/10986/2395
  • Das, A., T. Paul, A. Jana, S. K. Halder, K. Ghosh, C. Maity, P. K. Das Mohapatra, B. R. Pati, and K. C. Mondal. 2013. Bioconversion of rice straw to sugar using multizyme complex of fungal origin and subsequent production of bioethanol by mixed fermentation of Saccharomyces cerevisiae MTCC 173 and Zymomonas mobilis MTCC 2428. Industrial Crops and Products 46: 217–25 doi:10.1016/j.indcrop.2013.02.003
  • Demirbas, A. 2010. Social, economic, environmental and policy aspects of biofuels. Energy Education Science and Technology Part B–Social and Educational Studies 2 (1–2): 75–109.
  • Desloover, J., J. B. A. Arends, T. Hennebel, and K. Rabaey. 2012. Operational and technical considerations for microbial electrosynthesis. Biochemical Society Transactions 40 (6): 1233–38. doi:10.1042/BST20120111
  • Dien, B. S., N. N. Nichols, P. J. O’Bryan, and R. J. Bothast. 2000. Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Applied Biochemistry and Biotechnology 84 (6): 181–96. doi:10.1385/ABAB:84-86: 1–9:181
  • Du, Z. W., H. R. Li, and T. Y. Gu. 2007. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnology Advances 25 (5): 464–82. doi:10.1016/j.biotechadv.2007.05.004
  • Duerre, P. 2007. Biobutanol: An attractive biofuel. Biotechnology Journal 2 (12): 1525–34. doi:10.1002/biot.200700168
  • Dungan, R. S., and A. B. Leytem. 2013. The characterization of microorganisms in dairy wastewater storage ponds. Journal of Environmental Quality 42 (5): 1583–88. doi:10.2134/jeq2013.04.0134
  • Dusseaux, S., C. Croux, P. Soucaille, and I. Meynial-Salles. 2013. Metabolic engineering of Clostridium acetobutylicum ATCC 824 for the high-yield production of a biofuel composed of an isopropanol/butanol/ethanol mixture. Metabolic Engineering 18: 1–8. doi:10.1016/j.ymben.2013.03.003
  • Enis, M. 2008. Prices of animal feeds up by 42%. SN: Supermarket News 56 (34): 17.
  • Enis, M. 2011. Ethanol still a major source of inflationary pressure. SN: Supermarket News 59 (8): 10.
  • Frederickson, J. K., M. F. Romine, A. S. Beliaev, J. M. Auchtung, M. E. Driscoll, T. S. Gardner, K. H. Nealson, A. L. Osterman, G. Pinchuk, J. L. Reed, D. A. Rodioniv, A. M. Sporman, I. B. Zhulin, and J. M. Tiedje. 2008. Towards environmental systems biology of Shewanella. Nature Reviews Microbiology 6(8): 592–603. doi:10.1038/nrmicro1947
  • Freibauer, A., M. D. A. Rounsevell, P. Smith, and J. Verhagen. 2004. Carbon sequestration in the agricultural soils of Europe. Geoderma 122 (1): 1–3. doi:10.1016/j.geoderma.2004.01.021
  • Frigon, J.-C., F. Matteau-Lebrun, R. Hamani Abdou, P. J. McGinn, S. J. B. O’Leary, and S. R. Guiot. 2013. Screening microalgae strains for their productivity in methane following anaerobic digestion. Applied Energy 108 ( August): 100–07. doi:10.1016/j.apenergy.2013.02.051
  • Garvey, M. H. Klose, R. Fischer, C. Lambert, and U. Commandeur. 2013. Cellulases for biomass degradation: Comparing recombinant cellulase expression platforms. Trends in Biotechnology 31 (10): 581–93. doi:10.1016/j.tibtech.2013.06.006
  • Golkowska, K. 2013. Anaerobic digestion of maize and cellulose under thermophilic and mesophilic conditions—A comparative study. Biomass & Bioenergy 56: 545–54. doi:10.1016/j.biombioe.2013.05.029
  • Gorby, Y. A., S. Yanina, J. S. McLean, K. M. Rosso, D. Moyles, A. Dohnalkova, T. J. Beveridge, et al. 2006. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences of the United States of America 103 (30): 11358–363. doi:10.1073/pnas.0604517103
  • Graham, J. E., M. E. Clark, D. C. Nadler, S. Huffer, I. A. Chokhawala, S. E. Rowland, H. W. Blanch, D. S. Clark, and F. T. Robb. 2011. Identification and characterization of a multidomain hyperthermophilic cellulase from an archaeal enrichment. Nature Communications 2: 375. doi:10.1038/ncomms1373
  • Gray, K. A., L. S. Zhao, and M. Emptage. 2006. Bioethanol. Current Opinion in Chemical Biology 10 (2): 141–46. doi:10.1016/j.cbpa.2006.02.035
  • Grieco, M. A. B., J. J. V. Cavalcante, A. M. Cardoso, R. P. Viera, E. A. Machado, M. M. Clementino, M. N. Medeiros, et al. 2013. Microbial community diversity in the gut of the South American termite Cornitermes cumulans (Isoptera: Termitidae). Microbial Ecology 65 (1): 197–204. doi:10.1007/s00248-012-0119-6
  • Guo, S. L., Z. Q. Zhao, C. Wan, Z. Y. Huang, Y. L. Yang, M. A. Alam, S. H. Ho, F. W. Bai, and J. S. Chang. 2013. Characterization of flocculating agent from the self-flocculating microalga Scenedesmus obliquus AS-6-1 for efficient biomass harvest. Bioresource Technology 145: 285–89. doi:10.1016/j.biortech.2013.01.120
  • Hashemi, J., and A. Samimi. 2012. Steady state electric power generation in up-flow microbial fuel cell using the estimated time span method for bacteria growth domestic wastewater. Biomass & Bioenergy 45: 65–76. doi:10.1016/j.biombioe.2012.05.011
  • Hay, J. X. W., T. Y. Wu, J. C. Juan, and J. M. Jahim. 2013. Biohydrogen production through photo fermentation or dark fermentation using waste as a substrate: Overview, economics, and future prospects of hydrogen usage. Biofuels, Bioproducts & Biorefining 7 (3): 334–52. doi:10.1002/bbb.1403
  • Holma, A., K. Koponen, R. Antikainen, L. Lardon, L. Pekka, and P. Roux. 2013. Current limits of life cycle assessment framework in evaluating environmental sustainability—Case of two evolving biofuel technologies. Journal of Cleaner Production 54: 215–28 doi:10.1016/j.jclepro.2013.04
  • Hou, X. H., W. F. Peng, L. Xiong, C. Huang, X. F. Chen, X. D. Chen, and W. G. Zhang. 2013. Engineering Clostridium acetobutylicum for alcohol production. Journal of Biotechnology 166 (1–2): 25–33. doi:10.1016/j.jbiotec.2013.04.013
  • Hundt, M., K. Schnitzlein, and M. G. Schnitzlein. 2013. Alkaline polyol pulping and enzymatic hydrolysis of hardwood: Effect of pulping severity and pulp composition on cellulase activity and overall sugar yield. Bioresource Technology 136: 672–79. doi:10.1016/j.biortech.2013.02.084
  • Jacobson, M. Z. 2009. Review of solutions to global warming, air pollution, and energy security. Energy & Environmental Science 2 (2): 148–73. doi:10.1039/b809990c
  • Jang, Y. S., A. Malaviya, J. Lee, J. A. Im, S. Y. Lee, J. Lee, M. H. Eom, J. H. Cho, and D. Y. Seung. 2013. Metabolic engineering of Clostridium acetobutylicum for the enhanced production of isopropanol-butanol-ethanol fuel mixture. Biotechnology Progress 29 (4): 1083–88. doi:10.1002/btpr
  • Kampmann, K., S. Ratering, R. Baumann, M. Schmidt, W. Xerr, and S. Schnell. 2012. Hydrogenotrophic methanogens dominate in biogas reactors fed with defined substrates. Systematic and Applied Microbiology 35 (6): 404–13. doi:10.1016/j.syapm.2012.07.002
  • Kim, J., G. Yoo, H. Lee, J. Lim, K. Kim, C. W. Kim, M. S. Park, and J. W. Wang. 2013. Methods of downstream processing for the production of biodiesel from microalgae. Biotechnology Advances 31 (6): SI862–SI876. doi:10.1016/j.biotechadv.2013.04.006
  • Kim, S., and B. E. Dale. 2005. Life cycle assessment of various cropping systems utilized for producing biofuels: Bioethanol and biodiesel. Biomass & Bioenergy 29 (6):426–39. doi:10.1016/j.biombioe.2005.06.004
  • Kipf, E., J. Koch, B. Geiger, J. Erben, K. Richter, J. Gescher, R. Zengerle, and S. Kerzenmacher. 2013. Systematic screening of carbon-based anode materials for microbial fuel cells with Shewanella oneidensis MR-1. Bioresource Technology 146: 386–92. doi:10.1016/j.biortech.2013.07.076
  • Kovacs, K., L. Megyeri, G. Szakacs, C. P. Kubicek, M. Galbe, and G. Zacchi. 2008. Trichoderma atroviride mutants with enhanced production of cellulase and beta-glucosidase on pretreated willow. Enzyme and Microbial Technology 43 (1): 48–55. doi:10.1016/j.enzmictec.2008.02.006
  • Krause, L., N. N. Diaz, R. A. Edwards, K. H. Gartemann, H. Kromeke, H. H. Neuweger, A. Puhler, et al. 2008. Taxonomic composition and gene content of a methane-producing microbial community isolated from a biogas reactor. Journal of Biotechnology 136 (1–2): S91–S101. doi:10.1016/j.jbiotec.2008.06.003
  • Kuypers, M. M. M., P. Blokker, E. C. Hopmans, H. Kinkel, R. D. Pancost, S. Schouten, and J. S. S. Damste. 2002. Archaeal remains dominate marine organic matter from the Early Albian Oceanic Anoxic Event 1b. Palaeogeography Palaeoclimatology Palaeoecology 185 (1–2): 211–34.
  • Lamsal, B. P., R. Madl, and K. Tasakpunidis. 2011. Comparison of feedstock pretreatment performance and its effect on soluble sugar availability. Bioenergy Research 4 (3): 193–200. doi:10.1007/s12155-010-9112-4
  • Langpap, C., and J. J. Wu. 2011. Potential environmental impacts of increased reliance on corn-based bioenergy. Environmental & Resource Economics 49 (2): 147–71. doi:10.1007/s10640-010-9428-8
  • Lee, S. K., H. Chou, T. S. Ham, T. S. Lee, and J. D. Keasling. 2008. Metabolic engineering of microorganisms for biofuels production: From bugs to synthetic biology to fuels. Current Opinion in Biotechnology 19 (6): 556–63. doi:10.1016/j.copbio.2008.10.014
  • Leite, G. B., A. E. M. Abdelaziz, and P. C. Hallenbeck. 2013. Algal biofuels: Challenges and opportunities. Bioresource Technology 145: 134–41. doi:10.1016/j.biortech.2013.02.007
  • Liu, T. G., and C. Khosla. 2010. Genetic engineering of Escherichia coli for biofuel production. Annual Review of Genetics 44: 53–69. doi:10.1146/annurev-genet-102209-163440
  • Logan, B. E. 2008. Microbial fuel cells. New York: Wiley.
  • Lovley, D. R. 2006a. Bug juice: Harvesting electricity with microorganisms. Nature Reviews Microbiology 4 (7): 497–508.
  • Lovley, D. R. 2006b. Taming electricigens. The Scientist, July 1. www.the-scientist.com/?articles.view/articleNo/24140/title/Taming-Electricigens.
  • Ma, J. W., B. S. Zhao, C. Frear, Q. B. Zhao, L. Yu, X. J. Li, and S. L. Chen. 2013. Kinetics of psychrophilic anaerobic sequencing batch reactor treating flushed dairy manure. Bioresource Technology 137: 41–50. doi:10.1016/j.biortech.2013.03.101
  • Matano, Y., T. Hasunuma, and A. Kondo. 2013. Simultaneous improvement of saccharification and ethanol production from crystalline cellulose by alleviation of irreversible adsorption of cellulase with a cell surface-engineered yeast strain. Applied Microbiology and Biotechnology 97 (5): 2231–37. doi:10.1007/s00253-012-4587-x
  • Matos, C. T., M. Santos, B. P. Nobre, and L. Gouveia. 2013. Nannochloropsis spp. biomass recovery by electro-coagulation for biodiesel and pigment production. Bioresource Technology 134: 219–26. doi:10.1016/j.biortech.2013.02.024
  • Millat, T., H. Janssen, H. Bahl, R. J. Fischer, and O. Wolkenhauer. 2013. Integrative modeling of pH-dependent enzyme activity and transcriptomic regulation of the acetone-butanol-ethanol fermentation of Clostridium acetobutylicum in continuous culture. Microbial Biotechnology 6 (5): 526–39. doi:10.1111/1751-7915.12033
  • Minty, J. J., M. E. Singer, S. A. Scholz, C. H. Bae, J. H. Ahn, C. E. Foster, J. C. Liao, and X. N. Lin. 2013. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. Proceedings of The National Academy of Sciences of the United States Of America 110 (36): 14592–97. doi:10.1073/pnas.1218447110
  • Morgavi, D. P., E. Forano, C. Martin, and C. J. Newbold. 2010. Microbial ecosystem and methanogenesis in ruminants. Animal 4 (7): 1024–36. doi 10.1017/S1751731110000546
  • Nagarajan, S., S. K. Chou, S. Y. Cao, C. Wu, and Z. Zhou. 2013. An updated comprehensive techno-economic analysis of algae biodiesel. Bioresource Technology 145: 150–56. doi:10.1016/j.biortech.2012.11.108
  • Nawabi, P., S. Bauer, N. Kyrpides, and A. Lykidid. 2011. Engineering Escherichia coli for biodiesel production using a bacterial fatty acid methyltransferase. Applied and Environmental Microbiology 77 (22): 8052–61. doi:10.1128/AEM.05046-11
  • Nettmann, E., I. Bergmann, K. Mundt, B. Linke, and M. Klocke. 2008. Archaea diversity within a commercial biogas plant utilizing herbal biomass determined by 16S rDNA and mcrA analysis. Journal of Applied Microbiology 105 (6): 1835–50. doi:10.1111/j.1365-2672.2008.03949.x
  • Palonen, H., F. Tjerneld, G. Zacchi, and M. Tenkanen. 2004. Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. Journal of Biotechnology 107 (1): 65–72. doi:10.1016/j.jbiotec.2003.09.011
  • Pandey, K. K., N. Pragya, and P. K. Sahoo. 2013. A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renewable & Sustainable Energy Reviews 24: 159–71. doi:10.1016/j.rser.2013.03.034
  • Peterson, R., and H. Nevalainen. 2012. Trichoderma reesei RUT-C30—Thirty years of strain improvement. Microbiology 158: 58–68. doi:10.1099/mic.0.054031-0
  • Pfromm, P. H., V. Amanor-Boadu, R. R. Nelson, P. P. Vadlani, and R. R. Madl. 2010. Bio-butanol vs. bio-ethanol: A technical and economic assessment for corn and switchgrass fermented by yeast or Clostridium acetobutylicum. Biomass & Bioenergy 34 (4): 515–24. doi:10.1016/j.biombioe.2009.12.017
  • Qin, H. B., H. H. Lang, and H. J. Yang. 2013. Characterization of the methanogen community in a household anaerobic digester fed with swine manure in China. Applied Microbiology and Biotechnology 97 (18): 8163–71. doi:10.1007/s00253-013-4957-z
  • Qiu, D. R., H. H. Wei, Q. C. Tu, Y. F. Yang, M. Xie, J. R. Chen, M. H. Pinkerton, Y. L. Liang, Z. L. He, and J. Z. Zhou. 2013. Combined genomics and experimental analyses of respiratory characteristics of Shewanella putrefaciens W3-18-1. Applied and Environmental Microbiology 79 (17): 5250–57. doi:10.1128/AEM.00619-13
  • Quinn, J. C., K. B. Catton, S. Johnson, and T. H. Bradley. 2013. Geographical assessment of microalgae biofuels potential incorporating resource availability. Bioenergy Research 6 (2): 591–600. doi:10.1007/s12155-012-9277-0
  • Rabaey, K., L. Angenent, and U. Schroder. 2009. Bioelectrochemical systems: From extracellular electron transfer to biotechnology application. London: IWA Publishers.
  • Ragauskas, A. J., C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney, C. A. Eckert, W. J. Frederick, et al. 2006. The path forward for biofuels and biomaterials. Science 311 (5760): 484–89. doi:10.1126/science.1114736
  • Rajagopal, D. 2013. The fuel market effects of biofuel policies and implications for regulations based on lifecycle emissions. Environmental Research Letters 8 (2): 024013. doi:10.1088/1748-9326/8/2/024013
  • Reardon, P. N., and K. T. Mueller. 2013. Structure of the type IVva major pilin from the electrically conductive bacterial nanowires of Geobacter sulfurreducens. Journal of Biological Chemistry 288 (41): 29260–66. doi:10.1074/jbc.M113.498527
  • Renslow, R., J. Babauta, A. Kuprat, J. Schenk, C. Ivory, J. Frederickson, and H. Beyenal. 2013. Modeling biofilms with dual extracellular electron transfer mechanisms. Physical Chemistry Chemical Physics: PCCP 15 (44): 19162–283. doi:10.1039/c3cp53759e
  • Resch, M. G., B. S. Donohoe, J. O. Baker, S. R. Decker, E. A. Bayer, G. T. Beckham, and M. E. Himmel. 2013. Fungal cellulases and complexed cellulosomal enzymes exhibit synergistic mechanisms in cellulose deconstruction. Energy & Environmental Science 6 (6): 1858–67. doi:10.1039/c3ee00019b
  • Rulkens, W. 2008. Sewage sludge as a biomass resource for the production of energy: Overview and assessment of the various options. Energy & Fuels 22 (1): 9–5. doi:10.1021/ef700267m
  • Rulli, M. C., A. Saviori, and P. D’Odorico. 2013. Global land and water grabbing. Proceedings of The National Academy of Sciences of the United States of America 110 (3): 892–97. doi:10.1073/pnas.1213163110
  • Sarkar, N., S. K. Ghosh, and S. Bannerjee. 2012. Bioethanol production from agricultural wastes: An overview. Renewable Energy 37 (1): 19–27. doi:10.1016/j.renene.2011.06.045
  • Scherer, P., and L. Neumann. 2013. “Methano-compost,” a booster and restoring agent for thermophilic anaerobic digestion of energy crops. Biomass & Bioenergy 56: 471–78. doi:10.1016/j.biombioe.2013.05.021
  • Schill, S. R. 2013. IEA Rask40: Biomass provides 10% of global energy use. Ethanol Producer Magazine. www.ethanolproducer.com/articles/10250/iea-task40-biomass-provides-10-percent-of-global-energy-use
  • Serra, T. 2011. Volatility spillovers between food and energy markets: A semiparametric approach. Energy Economics 33 (6): 1155–64. doi:10.1016/j.eneco.2011.04.003
  • South, C. R., D. A. Hogsett, and L. R. Lynd. 1993. Continuous fermentation of cellulosic biomass to ethanol. Applied Biochemistry and Biotechnology 39: 587–600. doi:10.1007/BF02919020
  • Stephens, E., I. L. Ross, and B. Hankamer. 2013. Expanding the microalgal industry—Continuing controversy or compelling case? Current Opinion In Chemical Biology 17 (3): 444–52. doi:10.1016/j.cbpa.2013.03.030
  • St.-Pierre, B., and A. D. G. Wright. 2013. Metagenomic analysis of methanogen populations in three full-scale mesophilic anaerobic manure digesters operated on dairy farms in Vermont, USA. Bioresource Technology 138: 277–84.
  • Sundberg, C., W. A. Al-Soud, M. Larsson, B. H. Svensson, S. J. Sorenson, and A. Karlsson. 2013. 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiology Ecology 85 (3): 612–26. doi:10.1111/1574-6941.12148
  • U.S. Energy Information Administration. 2013. Annual energy review. Table 10.3: Fuel ethanol overview. http://www.eia.gov/totalenergy/data/annual/index.cfm#renewable
  • Venteris, E. R., R. L. Skaggs, A. M. Coleman, and M. S. Wigmosta. 2013. A GIS cost model to assess the availability of freshwater, seawater, and saline groundwater for algal biofuel production in the United States. Environmental Science & Technology 47 (9): 4840–49. doi:10.1021/es304135b
  • Verhaart, M. R. A., A. A. M. Bielen, J. van der Oost, A. J. M. Stams, and S. W. M. Kengen. 2010. Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: Mechanisms for reductant disposal. Environmental Technology 31 (8–9): 993–1003. doi:10.1080/09593331003710244
  • Woese, C. R., and G. E. Fox. 1977. Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proceedings of the National Academy of Sciences 74 (11): 5088–90. doi:10.1073/pnas.74.11.5088
  • Xin, F. X., H. J. Zhang, and W. C. Wong. 2013. Bioethanol production from horticultural waste using crude fungal enzyme mixtures produced by solid state fermentation. Bioenergy Research 6 (3): 1030–37. doi:10.1007/s12155-013-9330-7
  • Xu, Z., Q. H. Wang, Z. H. Jiang, X. X. Yang, and Y. Z. Ji. 2007. Enzymatic hydrolysis of pretreated soybean straw. Biomass & Bioenergy 31 (2–3): 162–67. doi:10.1016/j.biombioe.2006.06.015
  • Yadav, A. K., P. Panda, and B. Bag. 2013. The performance improvement of microbial fuel cells using different waste-sludge as an inoculum. Energy Sources Part A–Recovery Utilization and Environmental Effects 35 (19): 1828–35. doi:10.1080/15567036.2010.521801
  • Yadav, S., and R. K. Saxena. 2013. Conversion of glycerol into biobutanol by Clostridium acetobutylicum: Turning bacteria into biofuel factories. Current Opinion in Biotechnology 24 ( Supplement 1): S43. doi:10.1016/j.copbio.2013.05.094
  • Yamada, R., T. Hasunuma, and A. Kondo. 2013. Endowing non-cellulolytic microorganisms with cellulolytic activity aiming for consolidated bioprocessing. Biotechnology Advances 31 (6): SI754–63. doi:10.1016/j.biotechadv.2013.02.007
  • Yazdani, S. S., and R. González. 2008. Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products. Metabolic Engineering 10 (6): 340–51. doi:10.1016/j.ymben.2008.08.005
  • Zaimes, G. G., and V. Khanna. 2013. Microalgal biomass production pathways: Evaluation of life cycle environmental impacts. Biotechnology for Biofuels 6: 88. doi:10.1186/1754-6834-6-88
  • Zhou, M. H., H. Y. Wang, D. J. Hassett, and T. Y. Gu. 2013. Recent advances in microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) for wastewater treatment, bioenergy and bioproducts. Journal of Chemical Technology and Biotechnology 88 (4): 508–18. doi:10.1002/jctb.4004
  • Ziganshin, A. M., J. Liebetrau, J. Proeter, and S. Kleinsteuber. 2013. Microbial community structure and dynamics during anaerobic digestion of various agricultural waste materials. Applied Microbiology and Biotechnology 97 (11): 5161–174. doi:10.1007/s00253-013-4867-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.