3,599
Views
18
CrossRef citations to date
0
Altmetric
Articles

Estimating Pedestrian Flows on Street Networks

Revisiting the Betweenness Index

REFERENCES

  • Agrawal, W., Schlossberg, M., & Irvin, K. (2008). How far, by which route and why? A spatial analysis of pedestrian preference. Journal of Urban Design, 13(1), 81–98. https://doi.org/10.1080/13574800701804074
  • Allen, W. G., Clifton, K., Davies, G., Radford, N. (2004). Pedestrian flow modeling for prototypical Maryland cities. https://drum.lib.umd.edu/handle/1903/21516
  • Aoun, A., Bjornstad, J., DuBose, B., Mitman, M., Pelon, M. (2015). Bicycle and pedestrian forecasting tools: State of the practice (White Paper Series for the Federal Highway Administration DTFHGI-11-H-00024). Pedestrian and Bicycle Information Center. http://www.pedbikeinfo.org/cms/downloads/PBIC_WhitePaper_Forecasting.pdf
  • Batty, M. (2003). Agent-based pedestrian modelling. In Batty, M. (Ed.), The CASA book of GIS (pp. 81–108). Esri.
  • Bavaud, F., & Guex, G. (2012). Interpolating between random walks and shortest paths: A path functional approach. In K. Aberer, A. Flache, W. Jager, L. Liu, J. Tang, & C. Guéret (Eds.), Social informatics lecture notes in computer science (Vol. 7710, pp. 61–68). Springer. https://doi.org/10.1007/978-3-642-35386-4_6
  • Bluebikes. (n.d.). System data. https://www.bluebikes.com/system-data
  • Brandes, U. (2008). On variants of shortest-path betweenness centrality and their generic computation. Social Networks, 30(2), 136–145. https://doi.org/10.1016/j.socnet.2007.11.001
  • Broach, J., Dill, J. (2015). Pedestrian route choice model estimated from revealed preference GPS data [Paper presentation]. Transportation Research Board 94th Annual Meeting, Washington, DC. https://trid.trb.org/view/1338221
  • Cambridge Redevelopment Authority. (2018). Kendall Square redevelopment overview. https://www.cambridgeredevelopment.org/kendallredevelopmentoverview
  • City of Cambridge. (2020). Geographic information system. https://www.cambridgema.gov/GIS/gisdatadictionary
  • City of Melbourne. (2020). Pedestrian counting system. http://www.pedestrian.melbourne.vic.gov.au
  • City of Minneapolis. (2020). Pedestrian counts. http://www.minneapolismn.gov/pedestrian/data/pedcounts
  • Clifton, K. J., Singleton, P. A., Muhs, C. D., & Schneider, R. J. (2016). Representing pedestrian activity in travel demand models: Framework and application. Journal of Transport Geography, 52, 111–122. https://doi.org/10.1016/j.jtrangeo.2016.03.009
  • Cooper, C. H. V., & Chiaradia, A. J. F. (2020). sDNA: 3-D spatial network analysis for GIS, CAD, Command Line & Python. SoftwareX, 12, 100525. https://doi.org/10.1016/j.softx.2020.100525
  • Cooper, C. H. V., Harvey, I., Orford, S., & Chiaradia, A. J. F. (2019). Using multiple hybrid spatial design network analysis to predict longitudinal effect of a major city centre redevelopment on pedestrian flows. Transportation. Advance online publication. https://doi.org/10.1007/s11116-019-10072-0
  • Crucitti, P., Latora, V., & Porta, S. (2006). Centrality in networks of urban streets. Chaos (Woodbury, N.Y.), 16(1), 015113. https://doi.org/10.1063/1.2150162
  • Dogan, T., Samaranayake, S., Saraf, N. (2018, June 4–7). Urbano: A new tool to promote mobility-aware urban design, active transportation modeling and access analysis for amenities and public transport [Paper presentation]. Proceedings of SimAUD 2018.0, Delft, The Netherlands.
  • Erath, A. L., van Eggermond, M. A. B., Ordóñez Medina, S. A., & Axhausen, K. W. (2015). Modelling for walkability: Understanding pedestrians’ preferences in Singapore. IATBR 2015, Beaumont Estate, Windsor.
  • Esri. (2015). Generated by Andres Sevtsuk using Esri ArcGIS Business Analyst establishment location data (April 8, 2020) [Dataset]. https://www.esri.com/en-us/arcgis/products/arcgis-business-analyst/overview
  • Ewing, R., & Handy, S. (2009). Measuring the unmeasurable: Urban design qualities related to walkability. Journal of Urban Design, 14(1), 65–84. https://doi.org/10.1080/13574800802451155
  • Ewing, R., Handy, S., Brownson, R. C., Clemente, O., & Winston, E. (2006). Identifying and measuring urban design qualities related to walkability. Journal of Physical Activity and Health, 3(s1), S223–S240. https://doi.org/10.1123/jpah.3.s1.s223
  • Forsyth, A., Hearst, M., Oakes, J. M., & Schmitz, K. H. (2008). Design and destinations: Factors influencing walking and total physical activity. Urban Studies, 45(9), 1973–1996. https://doi.org/10.1177/0042098008093386
  • Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40(1), 35–41. https://doi.org/10.2307/3033543
  • Gao, S., Wang, Y., Gao, Y., & Liu, Y. (2013). Understanding urban traffic-flow characteristics: A rethinking of betweenness centrality. Environment and Planning B: Planning and Design, 40(1), 135–153. https://doi.org/10.1068/b38141
  • Garbrecht, D. (1971). Pedestrian paths through a uniform environment. Town Planning Review, 42(1), 71–84. https://doi.org/10.3828/tpr.42.1.n038q44813wx5nm2
  • Gehl, J. (2010). Cities for people. Island Press.
  • Glaeser, E. (2010). Triumph of the city: How our greatest invention makes us richer, smarter, greener, healthier, and happier. The Penguin Press.
  • Golledge, R. G. (1995). Path selection and route preference in human navigation: A progress report. In G. Goos, J. Hartmanis, & J. van Leeuwen (Eds.), Spatial information theory: A theoretical basis for GIS (pp. 207–222). Springer. https://doi.org/10.1007/3-540-60392-1_14
  • Greenwald, M., & Boarnet, M. (2001). Built environment as determinant of walking behavior: Analyzing nonwork pedestrian travel in Portland. Transportation Research Record: Journal of the Transportation Research Board, 1780(1), 33–41. https://doi.org/10.3141/1780-05
  • Guo, Z. (2009). Does the pedestrian environment affect the utility of walking? A case of path choice in downtown Boston. Transportation Research Part D: Transport and Environment, 14(5), 343–352. https://doi.org/10.1016/j.trd.2009.03.007
  • Guo, Z., & Loo, B. P. Y. (2013). Pedestrian environment and route choice: Evidence from New York City and Hong Kong. Journal of Transport Geography, 28, 124–136. https://doi.org/10.1016/j.jtrangeo.2012.11.013
  • Handy, S., & Niemeier, A. D. (1997). Measuring accessibility: An exploration of issues and alternatives. Environment and Planning A: Economy and Space, 29(7), 1175–1194. https://doi.org/10.1068/a291175
  • Hansen, W. G. (1959). How accessibility shapes land use. Journal of the American Institute of Planners, 25(2), 73–76. https://doi.org/10.1080/01944365908978307
  • Hillier, B., & Iida, S. (2005, September 14–18). Network and psychological effects in urban movement [Paper presentation]. International Conference on Spatial Information Theory COSIT 2005, Ellicottville, NY, USA.
  • Huff, D. (1963). A probabilistic analysis of shopping center trade areas. Land Economics, 39(1), 81–90. https://doi.org/10.2307/3144521
  • Institute of Transportation Engineers (ITE). (2016). Trip generation handbook (3rd ed.). https://ecommerce.ite.org/IMIS/ItemDetail?iProductCode=RP-028D-E
  • Jiang, B. (2009). Ranking spaces for predicting human movement in an urban environment. International Journal of Geographical Information Science, 23(7), 823–837. https://doi.org/10.1080/13658810802022822
  • Kantz, G. (2020). Inferring pedestrian and bicycle travel demand from consumer market segmentation and related datasets [Master’s thesis]. Massachusetts Institute of Technology.
  • Kazerani, A., & Winter, S. (2009). Can betweenness centrality explain traffic flow? [Paper presentation]. 12th AGILE International Conference on Geographic Information Science, Leibniz Universität Hannover, Germany, 1–9.
  • Kivimäki, I., Lebichot, B., Saramäki, J., & Saerens, M. (2016). Two betweenness centrality measures based on randomized shortest paths. Scientific Reports, 6, 19668. https://doi.org/10.1038/srep19668
  • Lee, S., & Talen, E. (2014). Measuring walkability: A note on auditing methods. Journal of Urban Design, 19(3), 368–388. https://doi.org/10.1080/13574809.2014.890040
  • Li, Y., & Tsukaguchi, H. (2005). Relationship between network topology and pedestrian route choice behavior. Journal of Eastern Asia Society for Transportation Studies, 6, 241–248.
  • Liang, X., Zhao, J., Dong, L., & Xu, K. (2013). Unraveling the origin of exponential law in intra-urban human mobility. Scientific Reports, 3(1), 2983. https://doi.org/10.1038/srep02983
  • Los Angeles Department of Transportation & Los Angeles Department of City Planning. (2020). City of Los Angeles VMT calculator user guide (Version 1.3). https://ladot.lacity.org/sites/default/files/documents/vmt_calculator_user_guide-2020.05.18.pdf
  • Loukaitou-Sideris, A. (2011). Sidewalks: Conflict and negotiation over public space. MIT Press.
  • Lue, G., & Miller, E. J. (2019). Estimating a Toronto pedestrian route choice model using smartphone GPS data. Travel Behaviour and Society, 14, 34–42. https://doi.org/10.1016/j.tbs.2018.09.008
  • Massachusetts Bay Transportation Authority (MBTA). (2017). MassGIS data: MBTA bus routes and stops. https://docs.digital.mass.gov/dataset/massgis-data-mbta-bus-routes-and-stops
  • Massachusetts Bay Transportation Authority (MBTA). (2020). MBTA data dashboard. https://mbtabackontrack.com/performance/#/download
  • Massachusetts Institute of Technology (MIT). (2018). MIT capital projects. http://capitalprojects.mit.edu/
  • Matlick, J. M. (1996). If we build it, will they come? (Forecasting ped use and flows) Forecasting the future. Bicycle Federation of America/Pedestrian Federation of America.
  • New York City DOT. (2008). World class streets: Remaking New York City’s public realm. http://www.nyc.gov/html/dot/downloads/pdf/World_Class_Streets_Gehl_08.pdf
  • Nordback, K., Kothuri, S., Petritsch, T., McLeod, P., Rose, E., Twaddell, H. (2016). Exploring pedestrian counting procedures: A review and compilation of existing procedures, good practices, and recommendations. Report FHWA-HPL-16-026 produced for the Office of Highway Policy Information, Federal Highway Administration. https://www.fhwa.dot.gov/policyinformation/travel_monitoring/pubs/hpl16026/hpl16026.pdf
  • Oishi, S., Saeki, M., & Axt, J. (2015). Are people living in walkable areas healthier and more satisfied with life? Applied Psychology: Health and Well-Being, 7(3), 365–386. https://doi.org/10.1111/aphw.12058
  • O’Toole, K., Piper, S. (2016). Innovation in bicycle and pedestrian counts: A review of emerging technology. White paper produced for Alta Planning & Design. https://altaplanning.com/wp-content/uploads/Innovative-Ped-and-Bike-Counts-White-Paper-Alta.pdf
  • Porta, S., Crucitti, P., & Latora, V. (2006). The network analysis of urban streets: A primal approach. Environment and Planning B: Planning and Design, 33(5), 705–725. https://doi.org/10.1068/b32045
  • Porta, S., Latora, V., Wang, F., Rueda, S., Strano, E., Scellato, S., Cardillo, A., Belli, E., Càrdenas, F., Cormenzana, B., & Latora, L. (2012). Street centrality and the location of economic activities in Barcelona. Urban Studies, 49(7), 1471–1488. https://doi.org/10.1177/0042098011422570
  • Porta, S., Strano, E., Iacoviello, V., Messora, R., Latora, V., Cardillo, A., Wang, F., & Scellato, S. (2009). Street centrality and densities of retail and services in Bologna, Italy. Environment and Planning B: Planning and Design, 36(3), 450–465. https://doi.org/10.1068/b34098
  • PTV. (2008). Pedestrians’ big debut in traffic simulation: From bit player to main character. PTV Compass, 1, 4–8. https://www.yumpu.com/en/document/view/4277652/pedestrians-big-debut-in-traffic-simulation-ptv-america
  • Puusepp, R., Lõoke, T., Cerrone, D., & Männigo, K. (2017). Simulating pedestrian movement. In K. de Rycke, C. Gengnagel, O. Baverel, J. Burry, C. Mueller, M. M. Nguyen, P. Rahm, & M. R. Thomsen (Eds.), Humanizing digital reality (pp. 547–557). Springer.
  • Rogers, S. H., Halstead, J. M., Gardner, K. H., & Carlson, C. H. (2011). Examining walkability and social capital as indicators of quality of life at the municipal and neighborhood scales. Applied Research in Quality of Life, 6(2), 201–213. https://doi.org/10.1007/s11482-010-9132-4
  • Rosenfield, A. I. (2018). Driving change: How workplace benefits can nudge solo car commuters toward sustainable modes [Master’s thesis]. Massachusetts Institute of Technology. https://dspace.mit.edu/handle/1721.1/117826?show=full
  • Rundle, A., Roux, A. V. D., Freeman, L. M., Miller, D., Neckerman, K. M., & Weiss, C. C. (2007). The urban built environment and obesity in New York City: A multilevel analysis. American Journal of Health Promotion, 21(4_suppl), 326–334. https://doi.org/10.4278/0890-1171-21.4s.326
  • Sevtsuk, A. (2014). Location and agglomeration: The distribution of retail and food businesses in dense urban environments. Journal of Planning Education and Research, 34(4), 374–393. https://doi.org/10.1177/0739456X14550401
  • Sevtsuk, A. (2018). Urban network analysis: Tools for modeling pedestrian and bicycle trips in cities. Harvard Graduate School of Design. http://cityform.mit.edu/projects/una-rhino-toolbox
  • Sevtsuk, A., & Kalvo, R. (2018). Patronage of urban commercial clusters: A network-based extension of the Huff model for balancing location and size. Environment and Planning B: Urban Analytics and City Science, 45(3), 508–528. https://doi.org/10.1177/2399808317721930
  • Sevtsuk, A., & Kalvo, R. (2021). Predicting pedestrian flow along city streets: A comparison of route choice estimation approaches in downtown San Francisco. International Journal of Sustainable Transportation. Advance online publication. https://doi.org/10.1080/15568318.2020.1858377
  • Sevtsuk, A., & Mekonnen, M. (2012). Urban network analysis toolbox. International Journal of Geomatics and Spatial Analysis, 22(2), 287–305.
  • Shatu, F., Yigitcanlar, T., & Bunker, J. (2019). Shortest path distance vs. least directional change: Empirical testing of space syntax and geographic theories concerning pedestrian route choice behaviour. Journal of Transport Geography, 74, 37–52. https://doi.org/10.1016/j.jtrangeo.2018.11.005
  • Speck, J. (2013). Walkable city: How downtown can save America one step at a time. North Point Press.
  • Streetlight Data. (2020). Streetlight data. https://streetlightdata.com
  • Takeuchi, D. (1977). Hokō-sha no keiro sentaku kōdō ni kansuru kenkyū [A study on pedestrian route choice behavior]. Doboku Gakkai No Yokou Shū [Proceedings of Japanese Society of Civil Engineers, 592, 91–101.
  • Talen, E. (2003). Neighborhoods as service providers: A methodology for evaluating pedestrian access. Environment and Planning B: Planning and Design, 30(2), 181–200. https://doi.org/10.1068/b12977
  • Tobler, W. (1970). A computer movie simulating urban growth in the Detroit region. Economic Geography, 46(2), 234–240. https://doi.org/10.2307/143141
  • Transportation Research Board. (TRB). (2012). NCHRP Report 716: Travel demand forecasting: Parameters and techniques. http://www.trb.org/Publications/Blurbs/167055.aspx
  • Transportation Research Board (TRB). (2014a). NCHRP report 765: Analytical travel forecasting approaches for project-level planning and design. http://www.trb.org/Publications/Blurbs/170900.aspx
  • Transportation Research Board (TRB). (2014b). NCHRP report 770: Estimating bicycling and walking for planning and project development: A guidebook. Retrieved from http://www.trb.org/Publications/Blurbs/171138.aspx
  • Transportation Research Board (TRB). (2014c). Transit capacity and quality of service manual (2nd ed.). http://www.trb.org/Main/Blurbs/153590.aspx
  • Transportation Research Board (TRB). (2016). NCHRP report 684. Enhancing internal trip capture estimation for mixed-use developments. http://www.trb.org/Publications/Blurbs/165014.aspx
  • Tribby, C. P., Miller, H. J., Brown, B. B., Werner, C. M., & Smith, K. R. (2017). Analyzing walking route choice through built environments using random forests and discrete choice techniques. Environment and Planning. B, Urban Analytics and City Science, 44(6), 1145–1167. https://doi.org/10.1177/0265813516659286
  • Turner, A. (2001). Depthmap: A program to perform visibility graph analysis [Paper presentation]. 3rd International Symposium on Space Syntax, Georgia Institute of Technology, 7–11 May 2001.
  • U.S. Census Bureau. (2015a). American Community Survey 3-year estimates. https://www.census.gov/programs-surveys/acs/news/data-releases.2015.html
  • U.S. Census Bureau. (2015b). TIGER/Line Shapefiles. https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.2015.html
  • U.S. Department of Transportation, Federal Highway Administration. (1999). Guidebook on methods to estimate non-motorized travel: Overview of methods. https://safety.fhwa.dot.gov/ped_bike/docs/guidebook1.pdf
  • U.S. Energy Information Administration. (2016). Commercial buildings energy consumption survey. https://www.eia.gov/consumption/commercial/data/2012/bc/cfm/b2.php
  • Vanky, A. (2017). To and fro: Digital data-driven analyses of pedestrian mobility in urban spaces. Massachusetts Institute of Technology. https://dspace.mit.edu/handle/1721.1/111372
  • Weinberger, R., Ricks, K., Schrieber, J., Cohen, L. (2014). Trip generation data collection in urban areas. DDOT & Nelson Nygaard. https://nelsonnygaard.com/projects/ddot-trip-generation/
  • Ye, P., Wu, B., & Fan, W. (2016). Modified betweenness-based measure for prediction of traffic flow on urban roads. Transportation Research Record: Journal of the Transportation Research Board, 2563(1), 144–150. https://doi.org/10.3141/2563-19
  • Zacharias, J. (2001). Pedestrian behavior and perception in urban walking environments. Journal of Planning Literature, 16(1), 3–18. https://doi.org/10.1177/08854120122093249