Publication Cover
Cybernetics and Systems
An International Journal
Volume 55, 2024 - Issue 1
181
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

ODMNet: Automated Glaucoma Detection and Classification Model Using Heuristically-Aided Optimized DenseNet and MobileNet Transfer Learning

&

References

  • Abdullah, F., R. Imtiaz, H. A. Madni, H. A. Khan, T. M. Khan, M. A. U. Khan, and S. S. Naqvi. 2021. A review on glaucoma disease detection using computerized techniques. IEEE Access. 9:37311–33. doi:10.1109/ACCESS.2021.3061451.
  • Acharya, U. R., S. Dua, X. Du, V. Sree S, and C. K. Chua. 2011. Automated diagnosis of glaucoma using texture and higher order spectra features. IEEE Transactions on Information Technology in Biomedicine 15 (3):449–55. doi:10.1109/TITB.2011.2119322.
  • Afolabi, O. J., G. P. Mabuza-Hocquet, F. V. Nelwamondo, and B. S. Paul. 2021. The use of U-Net lite and extreme gradient boost (XGB) for glaucoma detection. IEEE Access 9:47411–24. doi:10.1109/ACCESS.2021.3068204.
  • Alghamdi, M., and M. Abdel-Mottaleb. 2021. A comparative study of deep learning models for diagnosing glaucoma from fundus images. IEEE Access 9:23894–906. doi:10.1109/ACCESS.2021.3056641.
  • Ambati, L. S., K, Narukonda, G. R. Bojja, and D. Bishop, 2020. Factors influencing the adoption of artificial intelligence in organizations - From an employee’s perspective. MWAIS 2020 Proceedings.
  • Bojja, G. R., J. Liu, and L. Sai Ambati. 2021. Health information systems capabilities and Hospital performance – An SEM analysis. AMCIS 2021 Proceedings 31:1761.
  • Chan, K., T.-W. Lee, P. A. Sample, M. H. Goldbaum, R. N. Weinreb, and T. J. Sejnowski. 2002. Comparison of machine learning and traditional classifiers in glaucoma diagnosis. IEEE Transactions on Bio-Medical Engineering 49 (9):963–74. doi:10.1109/TBME.2002.802012.
  • Cheng, J., J. Liu, Y. Xu, F. Yin, D. W. K. Wong, N.-M. Tan, D. Tao, C.-Y. Cheng, T. Aung, and T. Y. Wong. 2013. Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. IEEE Transactions on Medical Imaging 32 (6):1019–32. doi:10.1109/TMI.2013.2247770.
  • Civit-Masot, J., M. J. Domínguez-Morales, S. Vicente-Díaz, and A. Civit. 2020. Dual machine-learning system to aid glaucoma diagnosis using disc and cup feature extraction. IEEE Access 8:127519–29. doi:10.1109/ACCESS.2020.3008539.
  • Elangovan, P., and M. K. Nath. 2021. A novel shallow ConvNet-18 for malaria parasite detection in thin blood smear images. SN Computer Science 2 (5):1–11. doi:10.1007/s42979-021-00763-w.
  • Elangovan, P., and M. K. Nath. 2022. En-ConvNet: A novel approach for glaucoma detection from color fundus images using ensemble of deep convolutional neural networks. International Journal of Imaging Systems and Technology 32 (6):2034–48.
  • George, Y., B. J. Antony, H. Ishikawa, G. Wollstein, J. S. Schuman, and R. Garnavi. 2020. Attention-guided 3D-CNN framework for glaucoma detection and structural-functional association using volumetric images. IEEE Journal of Biomedical and Health Informatics 24 (12):3421–30. doi:10.1109/JBHI.2020.3001019.
  • Guo, F., Y. Mai, X. Zhao, X. Duan, Z. Fan, B. Zou, and B. Xie. 2018. Yanbao: A mobile app using the measurement of clinical parameters for glaucoma screening. IEEE Access 6:77414–28. doi:10.1109/ACCESS.2018.2882946.
  • Islam, M. T., S. T. Mashfu, A. Faisal, S. C. Siam, I. T. Naheen, and R. Khan. 2022. Deep learning-based glaucoma detection with cropped optic cup and disc and blood vessel segmentation. IEEE Access 10:2828–41. doi:10.1109/ACCESS.2021.3139160.
  • Kar, M. K., D. R. Neog, and M. K. Nath. 2022. Retinal vessel segmentation using multi-scale residual convolutional neural network (MSR-Net) combined with generative adversarial networks. Circuits, Systems, and Signal Processing. doi:10.1007/s00034-022-02190-5.
  • Kim, P. Y., K. M. Iftekharuddin, P. G. Davey, M. Tóth, A. Garas, G. Holló, and E. A. Essock. 2013. Novel fractal feature-based multiclass glaucoma detection and progression prediction. IEEE Journal of Biomedical and Health Informatics 17 (2):269–76. doi:10.1109/TITB.2012.2218661.
  • Li, L., M. Xu, H. Liu, Y. Li, X. Wang, L. Jiang, Z. Wang, X. Fan, and N. Wang. 2020. A large-scale database and a CNN model for attention-based glaucoma detection. IEEE Transactions on Medical Imaging 39 (2):413–24. doi:10.1109/TMI.2019.2927226.
  • Liao, W., B. Zou, R. Zhao, Y. Chen, Z. He, and M. Zhou. 2020. Clinical interpretable deep learning model for glaucoma diagnosis. IEEE Journal of Biomedical and Health Informatics 24 (5):1405–12. doi:10.1109/JBHI.2019.2949075.
  • Luo, X., J. Li, M. Chen, X. Yang, and X. Li. 2021. Ophthalmic disease detection via deep learning with a novel mixture loss function. IEEE Journal of Biomedical and Health Informatics 25 (9):3332–9. doi:10.1109/JBHI.2021.3083605.
  • Ma, Y., R. Fallahzadeh, and H. Ghasemzadeh. 2016. Glaucoma-specific gait pattern assessment using body-worn sensors. IEEE Sensors Journal 16 (16):6406–15. doi:10.1109/JSEN.2016.2582083.
  • Maheshwari, S., R. B. Pachori, and U. R. Acharya. 2017. Automated diagnosis of glaucoma using empirical wavelet transform and correntropy features extracted from fundus images. IEEE Journal of Biomedical and Health Informatics 21 (3):803–13. doi:10.1109/JBHI.2016.2544961.
  • Mary, M., E. B. Rajsingh, and G. R. Naik. 2016. Retinal fundus image analysis for diagnosis of glaucoma: A comprehensive survey. IEEE Access 4:4327–54. doi:10.1109/ACCESS.2016.2596761.
  • Mirjalili, S., S. M. Mirjalili, and A. Lewis. 2014. Grey wolf optimizer. Advances in Engineering Software 69:46–61. doi:10.1016/j.advengsoft.2013.12.007.
  • Moazzeni, A. R., and E. Khamehchi. 2020. Rain optimization algorithm (ROA): A new metaheuristic method for drilling optimization solutions. Journal of Petroleum Science and Engineering 195:107512.
  • Nath, M. K., and S. Dandapat, 2012. Differential entropy in wavelet sub-band for assessment of glaucoma. International Journal of Imaging Systems and Technology 22 (3):161–65.
  • Nawaz, M., T. Nazir, A. Javed, U. Tariq, H.-S. Yong, M. A. Khan, and J. Cha. 2022. An efficient deep learning approach to automatic glaucoma detection using optic disc and optic cup localization. Sensors 22 (2):434. doi:10.3390/s22020434.
  • Nayak, D. R., D. Das, B. Majhi, S. V. Bhandary, and U. R. Acharya. 2021. ECNet: An evolutionary convolutional network for automated glaucoma detection using fundus images. Biomedical Signal Processing and Control 67:102559. doi:10.1016/j.bspc.2021.102559.
  • Niwas, S. I., W. Lin, C. K. Kwoh, C.-C. J. Kuo, C. C. Sng, M. C. Aquino, and P. T. K. Chew. 2016. Cross-examination for angle-closure glaucoma feature detection. IEEE Journal of Biomedical and Health Informatics 20 (1):343–54. doi:10.1109/JBHI.2014.2387207.
  • Ovreiu, S., E.-A. Paraschiv, and E. Ovreiu. 2021. Deep learning & digital fundus images: Glaucoma detection using DenseNet. 13th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), 1–4.
  • Parashar, D., and D. Agrawal. 2021a. 2-D compact variational mode decomposition-based automatic classification of glaucoma stages from fundus images. IEEE Transactions on Instrumentation and Measurement 70:1–10. doi:10.1109/TIM.2021.3071223.
  • Parashar, D., and D. K. Agrawal. 2020. Automated classification of glaucoma stages using flexible analytic wavelet transform from retinal fundus images. IEEE Sensors Journal 20 (21):12885–94. doi:10.1109/JSEN.2020.3001972.
  • Parashar, D., and D. K. Agrawal. 2021b. Automatic classification of glaucoma stages using two-dimensional tensor empirical wavelet transform. IEEE Signal Processing Letters 28:66–70. doi:10.1109/LSP.2020.3045638.
  • Patel, A. S., and V. Singh. 2021. Glaucoma detection using mask region-based convolutional neural networks. 5th International Conference on Electronics, Communication, and Aerospace Technology (ICECA), 1642–7.
  • Pedersen, M. E. H., and A. J. Chipperfield. 2010. Simplifying particle swarm optimization. Applied Soft Computing 10 (2):618–28. doi:10.1016/j.asoc.2009.08.029.
  • Serener, A., and S. Serte. 2019. Transfer learning for early and advanced glaucoma detection with convolutional neural networks. 2019 Medical Technologies Congress (TIPTEKNO), 1–4.
  • Shyamalee, T., and D. Meedeniya. 2022. CNN based fundus images classification For glaucoma identification. 2022 2nd International Conference on Advanced Research in Computing (ICARC).
  • Shyamalee, T., and D. Meedeniya. 2022b. Attention U-Net for glaucoma identification using fundus image segmentation. International Conference on Decision Aid Sciences and Applications (DASA), 6–10.
  • Shyamalee, T., and D. Meedeniya. 2022c. Glaucoma detection with retinal fundus images using segmentation and classification. Machine Intelligence Research 19 (6):563–80. doi:10.1007/s11633-022-1354-z.
  • Song, D., B. Fu, F. Li, J. Xiong, J. He, X. Zhang, and Y. Qiao. 2021a. Deep relation transformer for diagnosing glaucoma with optical coherence tomography and visual field function. IEEE Transactions on Medical Imaging 40 (9):2392–402. doi:10.1109/TMI.2021.3077484.
  • Song, W. T., I.-C. Lai, and Y.-Z. Su. 2021b. A statistical robust glaucoma detection framework combining retinex, CNN, and DOE using fundus images. IEEE Access 9:103772–83. doi:10.1109/ACCESS.2021.3098032.
  • Soni, M., I. R. Khan, K. S. Babu, S. Nasrullah, A. Madduri, and S. A. Rahin. 2022. Light weighted healthcare CNN model to detect prostate cancer on multiparametric MRI. Computational Intelligence and Neuroscience 2022:1–11. doi:10.1155/2022/5497120.
  • Sreng, S., N. Maneerat, K. Hamamoto, and K. Y. Win. 2020. Deep learning for optic disc segmentation and glaucoma diagnosis on retinal images. Applied Sciences 10 (14):4916.
  • Sudhan, M. B., M. Sinthuja, S. P. Raja, J. Amutharaj, G. C. P. Latha, S. S. Rachel, T. Anitha, T. Rajendran, and Y. A. Waji. 2022. Segmentation and classification of glaucoma using U-Net with deep learning model. Journal of Healthcare Engineering 2022:1–10. doi:10.1155/2022/1601354.
  • Tabassum, M., T. M. Khan, M. Arsalan, S. S. Naqvi, M. Ahmed, H. A. Madni, and J. Mirza. 2020. CDED-Net: Joint segmentation of optic disc and optic cup for glaucoma screening. IEEE Access 8:102733–47. doi:10.1109/ACCESS.2020.2998635.
  • Venugopal, V., J. Joseph, M. V. Das, and M. K. Nath. 2022a. An EfficientNet-based modified sigmoid transform for enhancing dermatological macro-images of melanoma and nevi skin lesions. Computer Methods and Programs in Biomedicine 222:106935. doi:10.1016/j.cmpb.2022.106935.
  • Venugopal, V., J. Joseph, M. V. Das, and M. K. Nath. 2022b. DTP-Net: A convolutional neural network model to predict threshold for localizing the lesions on dermatological macro-images. Computers in Biology and Medicine: Elsevier (IF - 6.698, indexed in SCI) 148:105852. doi:10.1016/j.compbiomed.2022.105852.
  • Vermeer, K. A., F. M. Vos, B. Lo, Q. Zhou, H. G. Lemij, A. M. Vossepoel, and L. J. van Vliet. 2006. Modeling of scanning laser polarimetry images of the human retina for progression detection of glaucoma. IEEE Transactions on Medical Imaging 25 (5):517–28. doi:10.1109/TMI.2006.871433.
  • Yousefi, S., M. H. Goldbaum, M. Balasubramanian, T.-P. Jung, R. N. Weinreb, F. A. Medeiros, L. M. Zangwill, J. M. Liebmann, C. A. Girkin, and C. Bowd. 2014. Glaucoma progression detection using structural retinal nerve fiber layer measurements and functional visual field points. IEEE Transactions on Bio-Medical Engineering 61 (4):1143–54. doi:10.1109/TBME.2013.2295605.
  • Yuan, Z., W. Wang, H. Wang, and A. Yildizbasi. 2020. Developed Coyote Optimization Algorithm and its application to optimal parameters estimation of PEMFC model. Energy Reports 6:1106–17. doi:10.1016/j.egyr.2020.04.032.
  • Zhao, R., X. Chen, X. Liu, Z. Chen, F. Guo, and S. Li. 2020. Direct cup-to-disc ratio estimation for glaucoma screening via semi-supervised learning. IEEE Journal of Biomedical and Health Informatics 24 (4):1104–13. doi:10.1109/JBHI.2019.2934477.
  • Zotin, A. 2018. Fast algorithm of image enhancement based on multi-scale retinex. Procedia Computer Science 131:6–14. doi:10.1016/j.procs.2018.04.179.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.