656
Views
36
CrossRef citations to date
0
Altmetric
Articles

Quantifying and Comparing Bipolar Versus Freehand Flake Morphologies, Production Currencies, and Reduction Energetics During Lithic Miniaturization

ORCID Icon &

References

  • Barham, L. S. (1987). The bipolar technique in southern Africa: A replication experiment. The South African Archaeological Bulletin, 42(145), 45–50. doi: 10.2307/3887773
  • Berman, M. J., Sievert, A. K., & Whyte, T. R. (1999). Form and function of bipolar lithic artifacts from the three dog site, San Salvador, Bahamas. Latin American Antiquity, 10, 415–432. doi: 10.2307/971965
  • Bettinger, R. L., Winterhalder, B., & McElreath, R. (2006). A simple model of technological intensification. Journal of Archaeological Science, 33(4), 538–545. doi: 10.1016/j.jas.2005.09.009
  • Binford, L. R. (1978). Nunamiut ethnoarchaeology (Studies in archaeology). New York, NY: Academic Press.
  • Binford, L. R., & Quimby, G. I. (1963). Indian sites and chipped stone materials in the Northern Lake Michigan area. Fieldiana Anthropology, 36(12), 277–307.
  • Boëda, E., & Bonilauri, S. (2006). The intermediate paleolithic: The first bladelet production, 40,000 years ago. Anthropologie, LXIV(1), 75–92.
  • Bordes, F. (1968). The Old Stone Age. (J. M. Anderson, Trans.). New York, NY: McGraw-Hill.
  • Brantingham, P. J., Gao, X., Madsen, D. B., Bettinger, R. L., & Elston, R. G. (2004). The initial upper Paleolithic at Shuidonggou, Northwestern China. In P. J. Brantingham, S. L. Kuhn, & K. W. Kerry (Eds.), The early upper Paleolithic beyond Western Europe (pp. 223–241). Berkeley: University of California Press.
  • Braun, D., & Harris, J. (2003). Technological developments in the Oldowan of Koobi Fora: Innovative techniques of artifact analysis. In J. Moreno, R. Torcal, & I. Sainz (Eds.), Oldowan: Rather more that smashing stones (pp. 117–144). Barcelona: University of Barcelona Press.
  • Buchanan, B., Mraz, V., & Eren, M. I. (2016). On identifying stone tool production techniques: An experimental and statistical assessment of pressure versus soft hammer percussion flake form. American Antiquity, 81(4), 737–751. doi: 10.1017/S0002731600101064
  • Byrne, F., Proffitt, T., Arroyo, A., & la Torre, I. (2015). A comparative analysis of bipolar and freehand experimental knapping products from Olduvai Gorge, Tanzania. Quaternary International, 424(7), 58–68.
  • Callahan, E. (1987). An evaluation of the lithic technology in middle Sweden during the mesolithic and neolithic. Upsalla: Societas Archaeologica Upsaliensis.
  • Close, A. E. (2002). Backed bladelets are a foreign country. In R. G. Elston & S. L. Kuhn (Eds.), Thinking small: Global perspectives on microlithization (pp. 31–44). Washington, DC: American Anthropological Association.
  • Davis, M. F. (1980). Some aspects of elands bay cave stone artefacts (Unpublished B.A. (Undergraduate thesis)). University of Cape Town, Cape Town.
  • de la Peña, P. (2015a). The interpretation of bipolar knapping in African Stone Age studies. Current Anthropology, 56(6), 911–923. doi: 10.1086/684071
  • de la Peña, P. (2015b). A qualitative guide to recognize bipolar knapping for flint and quartz. Lithic Technology, 4, 1–16.
  • de la Peña, P., & Vega Toscano, G. (2013). Bipolar knapping in gravettian occupations at el palomar rockshelter (Yeste, Southeastern Spain). Journal of Anthropological Research, 69, 33–64. doi: 10.3998/jar.0521004.0069.103
  • Deacon, J. (1984). The Later Stone Age of southernmost Africa. BAR international series. Oxford: Archaeopress.
  • Dibble, H. L., & McPherron, S. P. (2006). The missing mousterian. Current Anthropology, 47(5), 777–803. doi: 10.1086/506282
  • Díez-Martín, F., Yustos, P., Domínguez-Rodrigo, M., & Prendergast, M. (2011). An experimental study of bipolar and freehand knapping of Naibor Soit quartz from Olduvai Gorge (Tanzania). American Antiquity, 76(4), 690–708. doi: 10.7183/0002-7316.76.4.690
  • Driscoll, K. (2010). Understanding quartz technology in early prehistoric Ireland (Unpublished Ph.D. thesis). College of Arts & Celtic Studies, University College Dublin, Dublin.
  • Driscoll, K. (2011). Vein quartz in lithic traditions: An analysis based on experimental archaeology. Journal of Archaeological Science, 38(3), 734–745. doi: 10.1016/j.jas.2010.10.027
  • Duke, H., & Pargeter, J. (2015). Weaving simple solutions to complex problems: An experimental study of skill in bipolar cobble-splitting. Lithic Technology, 40(4), 349–365. doi: 10.1179/2051618515Y.0000000016
  • Eerkens, J. W., & Bettinger, R. L. (2001). Techniques for assessing standardization in artifact assemblages: Can we scale material variability? American Antiquity, 66, 493–504. doi: 10.2307/2694247
  • Eren, M. I., Díez-Martin, F., & Dominguez-Rodrigo, M. (2013). An empirical test of the relative frequency of bipolar reduction in beds VI, V, and III at Mumba Rockshelter, Tanzania: Implications for the East African middle to Late Stone Age transition. Journal of Archaeological Science, 40(1), 248–256. doi: 10.1016/j.jas.2012.08.012
  • Eren, M. I., Greenspan, A., & Garth Sampson, C. (2008). Are upper paleolithic blade cores more productive than middle paleolithic discoidal cores? A replication experiment. Journal of Human Evolution, 55(6), 952–961. doi: 10.1016/j.jhevol.2008.07.009
  • Eren, M. I., & Lycett, S. J. (2012). Why levallois? A morphometric comparison of experimental “preferential” levallois flakes versus debitage flakes. PLoS ONE, 7(1), e29273. doi: 10.1371/journal.pone.0029273
  • Eren, M. I., Lycett, S. J., Patten, R. J., Buchanan, B., Pargeter, J., & O'Brien, M. J. (2016). Test, model, and method validation: The role of experimental stone artifact replication in hypothesis-driven archaeology. Ethnoarchaeology, 8(2), 103–136. doi: 10.1080/19442890.2016.1213972
  • Eren, M. I., Roos, C. I., Story, B. A., von Cramon-Taubadel, N., & Lycett, S. J. (2014). The role of raw material differences in stone tool shape variation: An experimental assessment. Journal of Archaeological Science, 49, 472–487. doi: 10.1016/j.jas.2014.05.034
  • Finlay, N. (2006). Manifesting microliths: Insights and strategies from experimental replication. In J. K. Apel (Ed.), Skilled production and social reproduction (pp. 299–314). Uppsala: SAU Stone Studies.
  • Flenniken, J. J. (1981). Replicative systems analysis: A model applied to the vein Quartz Artifacts from the Hoko River site. Pullman: Washington State University Laboratory of Anthropology.
  • Goodyear, A. C. (1993). Tool kit entropy and bipolar reduction: A study of interassemblage lithic variability among Paleo-Indian sites in the northeastern United States. North American Archaeologist, 14(1), 1–23. doi: 10.2190/HN4D-3MNN-5NRX-QPC8
  • Gurtov, A. N., Buchanan, B., & Eren, M. I. (2015). “Dissecting” quartzite and basalt bipolar flake shape: A morphometric comparison of experimental replications from Olduvai Gorge, Tanzania. Lithic Technology, 4, 1–10.
  • Gurtov, A. N., & Eren, M. I. (2014). Lower paleolithic bipolar reduction and hominin selection of quartz at Olduvai Gorge, Tanzania: What’s the connection? Quaternary International, 322–323, 285–291. doi: 10.1016/j.quaint.2013.08.010
  • Hardaker, C. (1979). Dynamics of the bipolar technique. Flintknappers Exchange, 2(1), 13–16.
  • Hayden, B. (1979). Palaeolithic reflections: Lithic technology and ethnographic excavations among Australian aborigines. Canberra: Australian Institute of Aboriginal Studies.
  • Hayden, B. (1980). Confusion in the bipolar world: Bashed pebbles and splintered pieces. Lithic Technology, 9(1), 2–7. doi: 10.1080/01977261.1980.11754456
  • Hiscock, P. (1996). Mobility and technology in the Kakadu coastal wetlands. Bulletin of the Indo-Pacific Prehistory Association, 15, 151–157. doi: 10.7152/bippa.v15i0.11544
  • Hiscock, P. (2015a). Dynamics of knapping with bipolar techniques: Modeling transitions and the implications of variability. Exploring Variability in Bipolar Technology Special Publication of the Journal Lithic Technology, 4, 342–349.
  • Hiscock, P. (2015b). Making it small in the Palaeolithic: Bipolar stone-working, miniature artefacts and models of core recycling. World Archaeology, 47(1), 158–169. doi: 10.1080/00438243.2014.991808
  • Jennings, T. A., Pevny, C. D., & Dickens, W. A. (2010). A biface and blade core efficiency experiment: Implications for Early Paleoindian technological organization. Journal of Archaeological Science, 37(9), 2155–2164. doi: 10.1016/j.jas.2010.02.020
  • Jeske, R. J. (1992). Energetic efficiency and lithic technology: An upper mississippian example. American Antiquity, 57, 467–481. doi: 10.2307/280935
  • Jeske, R. J., & Lurie, R. (1993). The archaeological visibility of bipolar technology: An example from the Koster site. Midcontinental Journal of Archaeology, 18(2), 131–160.
  • Key, A. J. M., & Lycett, S. J. (2014). Are bigger flakes always better? An experimental assessment of flake size variation on cutting efficiency and loading. Journal of Archaeological Science, 41(0), 140–146. doi: 10.1016/j.jas.2013.07.033
  • Knutsson, K. (1988). Making and using stone tools: The analysis of the lithic assemblages from middle neolithic sites with flint in Västerbotten, northern Sweden 11. Uppsala: Uppsala Universitet/Acta Universitatis Uppsaliensis.
  • Kuhn, S. L. (1995). Mousterian lithic technology: An ecological perspective. Princeton, NJ: Princeton University Press.
  • Kuijt, I., Prentiss, W. C., & Pokotylo, D. L. (1995). Bipolar reduction: An experimental study of debitage variability. Lithic Technology, 20(2), 116–127.
  • Le Brun-Ricalens, F. (2006). Les pièces esquillées : état des connaissances après un siècle de reconnaissance. Paléo: Revue d’archaeologie préhisorique, 18, 95–114.
  • Li, H., Li, C., Sherwood, N. L., & Kuman, K. (2017). Experimental flaking in the Danjiangkou Reservoir Region (central China): A rare case of bipolar blanks in the Acheulean. Journal of Archaeological Science: Reports, 13, 26–35. doi: 10.1016/j.jasrep.2017.03.032
  • Low, M., & Mackay, A. (2016). The late Pleistocene microlithic at Putslaagte 8 rockshelter in the Western Cape, South Africa. South African Archaeological Bulletin, 71, 146–159.
  • Luedtke, B. E. (1992). An archaeologist’s guide to flint and chert (Archaeological Research Tools 7). Los Angeles: University of California.
  • Lycett, S. J., & Eren, M. I. (2013). Levallois economics: An examination of “waste” production in experimentally produced Levallois reduction sequences. Journal of Archaeological Science, 40(5), 2384–2392. doi: 10.1016/j.jas.2013.01.016
  • Mackay, A. (2008a). A method for estimating edge length from flake dimensions: Use and implications for technological change in the southern African MSA. Journal of Archaeological Science, 35(3), 614–622. doi: 10.1016/j.jas.2007.05.013
  • Mackay, A. (2008b). On the production of blades and its relationship to backed artefacts in the Howiesons Poort at Diepkloof, South Africa. Lithic Technology, 33(1), 87–99. doi: 10.1080/01977261.2008.11721062
  • Mackay, A., Jacobs, Z., Steele, T. E., & Orton, J. (2015). Pleistocene archaeology and chronology of Putslaagte 8 (PL8) Rockshelter, Western Cape, South Africa. Journal of African Archaeology, 13(1), 71–98. doi: 10.3213/2191-5784-10267
  • Manninen, M. A. (2016). The effect of raw material properties on flake and flake-tool dimensions: A comparison between quartz and chert. Quaternary International, 424, 24–31. doi: 10.1016/j.quaint.2015.12.096
  • Marwick, B., & Mackay, A. (2011). Costs and benefits in technological decision making under variable conditions: Examples from the Late Pleistocene in southern Africa. In B. Marwick & A. Mackay (Eds.), Keeping your edge: Recent approaches to the organisation of stone artefact technology (BAR international series, Vol. 2273, pp. 119–134). Oxford: Archeopress.
  • McCulloch, C. E. (2000). Generalized linear models. Journal of the American Statistical Association, 95(452), 1320–1324. doi: 10.1080/01621459.2000.10474340
  • McPherron, S. P., & Dibble, H. L. (1999). Stone tool analysis using digitized images: Examples from the lower and middle Paleolithic. Lithic Technology, 24(1), 38–52. doi: 10.1080/01977261.1999.11720944
  • Mitchell, P. J. (1988). The early microlithic assemblages of Southern Africa (BAR international series 388). Oxford: Archaeopress.
  • Mitchell, P. J. (2002). The archaeology of Southern Africa (Cambridge world archaeology). Cambridge: Cambridge University Press.
  • Morgan, B., Eren, M. I., Khreisheh, N., Hill, G., Bradley, B., Jennings, T., & Smallwood, A. (2015). Clovis bipolar lithic reduction at Paleo Crossing, Ohio: A reinterpretation based on the examination of experimental replications. In J. Thomas & S. Ashley (Eds.), Clovis: Current perspectives on technology, chronology, and adaptations (pp. 121–143). College Station: Texas A&M Press.
  • Mourre, V. (2004). Le débitage sur enclume au Paléolithique moyen dans le Sud-Ouest de la France. In S. d. Congrès (Ed.), Session 5: Middle Paleolithic. Acts of the XIVth UISPP Congress (BAR international series, Vol. S1239, pp. 29–38). Oxford: Archaeopress.
  • Mourre, V., & Jarry, M. (2011). Entre le marteau et l’enclume: La percussion directe au percuteur dur et la diversité de ses modalités d’application. Actes de la table ronde organisée à Toulouse du au mars. La Société des Amis du Musée National de Préhistoire et de la Recherche Archéologique avec le concours de l’Université de Toulouse le Mirail. Toulouse: PALEO.
  • Muller, A., Clarkson, C., & Macchiarelli, R. (2016). Identifying major transitions in the evolution of lithic cutting edge production rates. PLoS ONE, 11(12), e0167244. doi: 10.1371/journal.pone.0167244
  • Odell, G. H. (1994). The role of stone bladelets in middle woodland society. American Antiquity, 59, 102–120. doi: 10.2307/3085505
  • Pargeter, J. (2016). Lithic miniaturization in late Pleistocene southern Africa. Journal of Archaeological Science: Reports, 10, 221–236. doi: 10.1016/j.jasrep.2016.09.019
  • Pargeter, J., & de la Peña, P. (in press). Quartz bipolar reduction and lithic miniaturization: Experimental results and archaeological implications. Journal of Field Archaeology.
  • Pargeter, J., & Redondo, M. (2016). Contextual approaches to studying unretouched bladelets: A late Pleistocene case study at Sehonghong Rockshelter, Lesotho. Quaternary International, 404, 30–43. doi: 10.1016/j.quaint.2015.08.038
  • Parry, W. A., & Kelly, R. L. (1987). Expedient core technology and sedentism. In J. K. Johnson & C. A. Morrow (Eds.), The organization of core technology (pp. 285–304). Boulder: Westview Press.
  • Picin, A., & Vaquero, M. (2016). Flake productivity in the Levallois recurrent centripetal and discoid technologies: New insights from experimental and archaeological lithic series. Journal of Archaeological Science: Reports, 8, 70–81. doi: 10.1016/j.jasrep.2016.05.062
  • Porraz, G., Igreja, M., Schmidt, P., & Parkington, J. E. (2016). A shape to the microlithic Robberg from Elands Bay Cave (South Africa). Southern African Humanities, 29, 203–247.
  • Prasciunas, M. M. (2007). Bifacial cores and flake production efficiency: An experimental test of technological assumptions. American Antiquity, 72(2), 334–348. doi: 10.2307/40035817
  • Prous, A., Alonso, M., de Souza, G. N., Lima, A. P., & Amoreli, F. (2010). La place et les caractéristiques du débitage sur enclume (“bipolaire”) dans les industries brésiliennes. PALEO. Revue d’archéologie préhistorique (spécial), 201–219.
  • Quinn, G. G. P., & Keough, M. J. (2002). Experimental design and data analysis for biologists. Cambridge: Cambridge University Press.
  • R Core Team. (2013). R: A language and environment for statistical computing. Vienna: Foundation for Statistical Computing.
  • Ranere, A. J. (1978). Toolmaking and tool use among the preceramic peoples of Panama. In D. L. Browman (Ed.), Advances in Andean archaeology (pp. 41–84). The Hague: Mounton Press.
  • Schoville, B. J. (2010). Frequency and distribution of edge damage on Middle Stone Age lithic points, Pinnacle Point 13B, South Africa. Journal of Human Evolution, 59(3–4), 378–391. doi: 10.1016/j.jhevol.2010.07.015
  • Shea, J. J. (2015). Making and using stone tools: Advice for learners and teachers and insights for archaeologists. Lithic Technology, 40(3), 231–248. doi: 10.1179/2051618515Y.0000000011
  • Sheets, P. D., & Muto, G. R. (1972). Pressure blades and total cutting edge: An experiment in lithic technology. Science, 175(4022), 632–634. doi: 10.1126/science.175.4022.632
  • Shott, M. J. (1999). On bipolar reduction and splintered pieces. North American Archaeologist, 20(3), 217–238. doi: 10.2190/0VP5-TT1E-3WLC-9RCA
  • Shott, M. J., & Tostevin, G. (2015). Diversity under the bipolar umbrella. Lithic Technology, 40(4), 377–384. doi: 10.1179/2051618515Y.0000000017
  • Soriano, S., Villa, P., & Wadley, L. (2007). Blade technology and tool forms in the Middle Stone Age of South Africa: The Howiesons Poort and post-Howiesons Poort at Rose Cottage Cave. Journal of Archaeological Science, 34(5), 681–703. doi: 10.1016/j.jas.2006.06.017
  • Stutz, A. J., Shea, J. J., Rech, J. A., Pigati, J. S., Wilson, J., Belmaker, M., … Clark, J. L. (2015). Early Upper Paleolithic chronology in the Levant: New ABOx-SC accelerator mass spectrometry results from the Mughr el-Hamamah Site, Jordan. Journal of Human Evolution, 85, 157–173. doi: 10.1016/j.jhevol.2015.04.008
  • Tabrett, A. (2016). The detachment of Levallois flakes using bipolar percussion at Howiesons Poort Shelter, South Africa. Journal of Archaeological Science: Reports. doi:10.1016/j.jasrep.2016.11.011.
  • Torrence, R. (1989). Time, energy and stone tools (New directions in archaeology). Cambridge: Cambridge University Press.
  • Tostevin, G. B. (2012). Seeing lithics: A middle-range theory for testing for cultural transmission in the pleistocene. Oakville: Oxbow Books.
  • van Riet Lowe, C. (1946). The coastal smithfield and bipolar technique. South African Journal of Science, 42, 240.
  • Wadley, L. (1993). The pleistocene Later Stone Age south of the Limpopo River. Journal of World Prehistory, 7(3), 243–296. doi: 10.1007/BF00974721
  • White, J. P. (1968). Ston Naip Bilong Tumbuna: The living Stone Age in New Guinea. In F. Bordes & D. de Sonneville-Bordes (Eds.), La Préhistoire: Problèmes et Tendances (pp. 511–516). Paris: CNRS.
  • White, J. P., & Thomas, D. H. (1972). What mean these stones? Ethno-taxonomic models and archaeological interpretations in the New Guinea Highlands. In D. L. Clark (Ed.), Models in archaeology (pp. 275–308). London: Methuen.
  • Wolfhagen, J., & Price, M. D. (2017). A probabilistic model for distinguishing between sheep and goat postcranial remains. Journal of Archaeological Science: Reports, 12, 625–631. doi: 10.1016/j.jasrep.2017.02.022
  • Zeileis, A., Wiel, M. A., Hornik, K., & Hothorn, T. (2008). Implementing a class of permutation tests: The coin package. Journal of Statistical Software, 28(8), 1–23.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.