193
Views
7
CrossRef citations to date
0
Altmetric
Empirical Research Papers / Artcículos de Investigación Empírica

The role of attentional networks in the access to the numerical magnitude of fractions in adults / El rol de las redes atencionales en el acceso a la magnitud numérica de fracciones en adultos

, &
Pages 495-522 | Received 15 Nov 2016, Accepted 21 Dec 2016, Published online: 29 Mar 2017

References / Referencias

  • Barraza, P., Gómez, D. M., Oyarzún, F., & Dartnell, P. (2014). Long-distance neural synchrony correlates with processing strategies to compare fractions. Neuroscience Letters, 567, 40–44. doi:10.1016/j.neulet.2014.03.021
  • Blair, C., Knipe, H., & Gamson, D. (2008). Is there a role for executive functions in the development of mathematics ability? Mind, Brain, and Education, 2, 80–89. doi:10.1111/j.1751-228X.2008.00036.x
  • Bonato, M., Fabbri, S., Umiltà, C., & Zorzi, M. (2007). The mental representation of numerical fractions: Real or integer? Journal of Experimental Psychology: Human Perception and Performance, 33, 1410 –1419
  • Cragg, L., & Gilmore, C. (2014). Skills underlying mathematics: The role of executive function in the development of mathematics proficiency. Trends in Neuroscience and Education, 3, 63–68. doi:10.1016/j.tine.2013.12.001
  • Dehaene, S. (1997). The number sense. New York, NY: Oxford University Press.
  • Dehaene, S., Kerszberg, M., & Changeux, J. P. (1998). A neuronal model of a global workspace in effortful cognitive tasks. Proceedings of the National Academy of Sciences, 95, 14529–14534. doi:10.1073/pnas.95.24.14529
  • DeWolf, M., & Vosniadou, S. (2015). The representation of fraction magnitudes and the whole number bias reconsidered. Learning and Instruction, 37, 39–49. doi:10.1016/j.learninstruc.2014.07.002
  • Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135–168. doi:10.1146/annurev-psych-113011-143750
  • Fan, J., & Posner, M. (2004). Human attentional networks. Psychiatrische Praxis, 31(S 2), 210–214. doi:10.1055/s-2004-828484
  • Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 14, 340–347. doi:10.1162/089892902317361886
  • Fazio, L. K., DeWolf, M., & Siegler, R. S. (2016). Strategy use and strategy choice in fraction magnitude comparison. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42, 1–16
  • Gilmore, C., Keeble, S., Richardson, S., & Cragg, L. (2015). The role of cognitive inhibition in different components of arithmetic. ZDM, 47, 771–782. doi:10.1007/s11858-014-0659-y
  • Gómez, D. M., Jiménez, A., Bobadilla, R., Reyes, C., & Dartnell, P. (2015). The effect of inhibitory control on general mathematics achievement and fraction comparison in middle school children. ZDM, 47, 801–811. doi:10.1007/s11858-015-0685-4
  • Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., & Stahel, W. A. (2011). Robust statistics: The approach based on influence functions (Vol. 114). New York, NY: John Wiley & Sons.
  • Hofmann, W., Schmeichel, B. J., & Baddeley, A. D. (2012). Executive functions and self-regulation. Trends in Cognitive Sciences, 16, 174–180. doi:10.1016/j.tics.2012.01.006
  • Holland, P. W., & Welsch, R. E. (1977). Robust regression using iteratively reweighted least-squares. Communications in Statistics-Theory and Methods, 6, 813–827. doi:10.1080/03610927708827533
  • Ischebeck, A., Schocke, M., & Delazer, M. (2009). The processing and representation of fractions within the brain: An fMRI investigation. NeuroImage, 47, 403–413. doi:10.1016/j.neuroimage.2009.03.041
  • Kolkman, M. E., Hoijtink, H. J., Kroesbergen, E. H., & Leseman, P. P. (2013). The role of executive functions in numerical magnitude skills. Learning and Individual Differences, 24, 145–151. doi:10.1016/j.lindif.2013.01.004
  • Meert, G., Grégoire, J., & Noël, M. P. (2009). Rational numbers: Componential versus holistic representation of fractions in a magnitude comparison task. The Quarterly Journal of Experimental Psychology, 62, 1598–1616. doi:10.1080/17470210802511162
  • Meert, G., Grégoire, J., & Noël, M. P. (2010). Comparing 5/7 and 2/9: Adults can do it by accessing the magnitude of the whole fractions. Acta Psychologica, 135, 284–292. doi:10.1016/j.actpsy.2010.07.014
  • Moyer, R. S., & Landauer, T. K. (1967). Time required for Judgements of Numerical Inequality. Nature, 215, 1519–1520. doi:10.1038/2151519a0
  • Ni, Y., & Zhou, Y. D. (2005). Teaching and learning fraction and rational numbers: The origins and implications of whole number bias. Educational Psychologist, 40, 27–52. doi:10.1207/s15326985ep4001_3
  • Obersteiner, A., Van Dooren, W., Van Hoof, J., & Verschaffel, L. (2013). The natural number bias and magnitude representation in fraction comparison by expert mathematicians. Learning and Instruction, 28, 64–72. doi:10.1016/j.learninstruc.2013.05.003
  • Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 73–89. doi:10.1146/annurev-neuro-062111-150525
  • Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25–42. doi:10.1146/annurev.ne.13.030190.000325
  • Ratcliff, R. (1993). Methods for dealing with reaction time outliers. Psychological Bulletin, 114, 510–532. doi:10.1037/0033-2909.114.3.510
  • Rothbart, M. K., Sheese, B. E., & Posner, M. I. (2007). Executive attention and effortful control: Linking temperament, brain networks, and genes. Child Development Perspectives, 1, 2–7. doi:10.1111/cdep.2007.1.issue-1
  • Schneider, M., & Siegler, R. S. (2010). Representations of the magnitudes of fractions. Journal of Experimental Psychology: Human Perception and Performance, 36, 1227–1238
  • Sprute, L., & Temple, E. (2011). Representations of fractions: Evidence for accessing the whole magnitude in adults. Mind, Brain, and Education, 5, 42–47. doi:10.1111/j.1751-228X.2011.01109.x
  • Vamvakoussi, X., Van Dooren, W., & Verschaffel, L. (2012). Naturally biased? In search for reaction time evidence for a natural number bias in adults. The Journal of Mathematical Behavior, 31, 344–355. doi:10.1016/j.jmathb.2012.02.001
  • Van Hoof, J., Lijnen, T., Verschaffel, L., & Van Dooren, W. (2013). Are secondary school students still hampered by the natural number bias? A reaction time study on fraction comparison tasks. Research in Mathematics Education, 15, 154–164. doi:10.1080/14794802.2013.797747
  • Zhang, L., Fang, Q., Gabriel, F. C., & Szűcs, D. (2016). Common magnitude representation of fractions and decimals is task dependent. The Quarterly Journal of Experimental Psychology, 69, 764–780. doi:10.1080/17470218.2015.1052525

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.