378
Views
4
CrossRef citations to date
0
Altmetric
Theoretical Review Papers / Artículos de Revisión Teórica

Neural mechanisms of cognitive control / Mecanismos neurales de control cognitivo

Pages 311-337 | Received 15 Sep 2016, Accepted 27 Dec 2016, Published online: 28 Apr 2017

References / Referencias

  • Anderson, M. L., Kinnison, J., & Pessoa, L. (2013). Describing functional diversity of brain regions and brain networks. Neuroimage, 73, 50–58. doi:10.1016/j.neuroimage.2013.01.071
  • Barch, D. M., Braver, T. S., Sabb, F. W., & Noll, D. C. (2000). Anterior cingulate and the monitoring of response conflict: Evidence from an fMRI study of overt verb generation. Journal of Cognitive Neuroscience, 12, 298–309. doi:10.1162/089892900562110
  • Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652. doi:10.1037/0033-295X.108.3.624
  • Botvinick, M. M., & Cohen, J. D. (2014). The computational and neural basis of cognitive control: Charted territory and new frontiers. Cognitive Science, 38, 1249–1285. doi:10.1111/cogs.12126
  • Brass, M., Derrfuss, J., Forstmann, B., & von Cramon,D. Y. (2005). The role of the inferior frontal junction area in cognitive control. Trends in Cognitive Sciences, 9, 314–316. doi:10.1016/j.tics.2005.05.001
  • Brass, M., & von Cramon, D. Y. (2004). Decomposing components of task preparation with functional magnetic resonance imaging. Journal of Cognitive Neuroscience, 16, 609–620. doi:10.1162/089892904323057335
  • Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16, 106–113. doi:10.1016/j.tics.2011.12.010
  • Bressler, S. L., & Richter, C. G. (2015). Interareal oscillatory synchronization in top-down neocortical processing. Current Opinion in Neurobiology, 31, 62–66. doi:10.1016/j.conb.2014.08.010
  • Brown, J. W., & Braver, T. S. (2005). Learned predictions of error likelihood in the anterior cingulate cortex. Science, 307, 1118–1121. doi:10.1126/science.1105783
  • Buschman, T. J., Denovellis, E. L., Diogo, C., Bullock, D., & Miller, E. K. (2012). Synchronous oscillatory neural ensembles for rules in the prefrontal cortex. Neuron, 76, 838–846. doi:10.1016/j.neuron.2012.09.029
  • Buschman, T. J., & Miller, E. K. (2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science, 315, 1860–1862. doi:10.1126/science.1138071
  • Buschman, T. J., & Miller, E. K. (2014). Goal-direction and top-down control. Philosophical Transactions of the Royal Society B: Biological Sciences, 369, 20130471. doi:10.1098/rstb.2013.0471
  • Capilla, A., Schoffelen, J.-M., Paterson, G., Thut, G., & Gross, J. (2014). Dissociated α-band modulations in the dorsal and ventral visual pathways in visuospatial attention and perception. Cerebral Cortex, 24, 550–561. doi:10.1093/cercor/bhs343
  • Clayton, M. S., Yeung, N., & Kadosh, R. C. (2015). The roles of cortical oscillations in sustained attention. Trends in Cognitive Sciences, 19, 188–195. doi:10.1016/j.tics.2015.02.004
  • Cole, M. W., Reynolds, J. R., Power, J. D., Repovs, G., Anticevic, A., & Braver, T. S. (2013). Multi-task connectivity reveals flexible hubs for adaptive task control. Nature Neuroscience, 16, 1348–1355. doi:10.1038/nn.3470
  • Crittenden, B. M., Mitchell, D. J., & Duncan, J. (2015). Recruitment of the default mode network during a demanding act of executive control. ELife, 4, e06481. doi:10.7554/eLife.06481
  • Crittenden, B. M., Mitchell, D. J., & Duncan, J. (2016). Task encoding across the Multiple Demand cortex is consistent with a Frontoparietal and Cingulo-Opercular dual networks distinction. Journal of Neuroscience, 36, 6147–6155. doi:10.1523/JNEUROSCI.4590-15.2016
  • Crone, E. A., Wendelken, C., Donohue, S. E., & Bunge, S. A. (2006). Neural evidence for dissociable components of task-switching. Cerebral Cortex, 16, 475–486. doi:10.1093/cercor/bhi127
  • Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222. doi:10.1146/annurev.ne.18.030195.001205
  • Dosenbach, N. U., Fair, D. A., Cohen, A. L., Schlaggar, B. L., & Petersen, S. E. (2008). A dual-networks architecture of top-down control. Trends in Cognitive Sciences, 12, 99–105. doi:10.1016/j.tics.2008.01.001
  • Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: Mental programs for intelligent behaviour. Trends in Cognitive Sciences, 14, 172–179. doi:10.1016/j.tics.2010.01.004
  • Egner, T., & Hirsch, J. (2005). Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nature Neuroscience, 8, 1784–1790. doi:10.1038/nn1594
  • Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16, 143–149. doi:10.3758/BF03203267
  • Etzel, J. A., Cole, M. W., Zacks, J. M., Kay, K. N., & Braver, T. S. (2016). Reward motivation enhances task coding in frontoparietal cortex. Cerebral Cortex, 26, 1647–1659. doi:10.1093/cercor/bhu327
  • Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences, 102, 9673–9678. doi:10.1073/pnas.0504136102
  • Fries, P. (2015). Rhythms for cognition: Communication through coherence. Neuron, 88, 220–235. doi:10.1016/j.neuron.2015.09.034
  • Friston, K. J. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 815–836. doi:10.1098/rstb.2005.1622
  • Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., Yacoub, E., … Van Essen, D. C. (2016). A multi-modal parcellation of human cerebral cortex. Nature, 536, 171–178. doi:10.1038/nature18933
  • Haynes, J.-D., Sakai, K., Rees, G., Gilbert, S., Frith, C., & Passingham, R. E. (2007). Reading hidden intentions in the human brain. Current Biology, 17, 323–328. doi:10.1016/j.cub.2006.11.072
  • Heilbronner, S. R., & Hayden, B. Y. (2016). Dorsal anterior cingulate cortex: A bottom-up view. Annual Review of Neuroscience, 39, 149–170. doi:10.1146/annurev-neuro-070815-013952
  • Holroyd, C. B., & Coles, M. G. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109, 679–709. doi:10.1037/0033-295X.109.4.679
  • Koechlin, E., Ody, C., & Kouneiher, F. (2003). The architecture of cognitive control in the human prefrontal cortex. Science, 302, 1181–1185. doi:10.1126/science.1088545
  • Landsiedel, J., & Gilbert, S. J. (2015). Creating external reminders for delayed intentions: Dissociable influence on “task-positive” and “task-negative” brain networks. NeuroImage, 104, 231–240. doi:10.1016/j.neuroimage.2014.10.021
  • Levy, B. J., & Wagner, A. D. (2011). Cognitive control and right ventrolateral prefrontal cortex: Reflexive reorienting, motor inhibition, and action updating. Annals of the New York Academy of Sciences, 1224, 40–62. doi:10.1111/j.1749-6632.2011.05958.x
  • Marini, F., Demeter, E., Roberts, K., Chelazzi, L., & Woldorff, M. (2016). Orchestrating proactive and reactive mechanisms for filtering distracting information: Brain-behavior relationships revealed by a mixed-design fMRI study. The Journal of Neuroscience, 36, 988–1000. doi:10.1523/JNEUROSCI.2966-15.2016
  • Miller, E. K., & Cohen, J. D. (2001). Integrative theory of PFC function. Annual Review of Neuroscience, 24, 167–202. doi:10.1146/annurev.neuro.24.1.167
  • Momennejad, I., & Haynes, J.-D. (2013). Encoding of prospective tasks in the human prefrontal cortex under varying task loads. The Journal of Neuroscience, 33, 17342–17349. doi:10.1523/JNEUROSCI.0492-13.2013
  • Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7, 134–140. doi:10.1016/S1364-6613(03)00028-7
  • Muhle-Karbe, P. S., Andres, M., & Brass, M. (2014). Transcranial magnetic stimulation dissociates prefrontal and parietal contributions to task preparation. Journal of Neuroscience, 34, 12481–12489. doi:10.1523/JNEUROSCI.4931-13.2014
  • Norman, D., & Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In R. Davidson, R. Schwartz, & D. Shapiro (Eds.), Consciousness and self- regulation: Advances in research and theory (Vol. 4, pp. 1–18). New York, NY: Plenum Press.
  • Posner, M., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25–42. doi:10.1146/annurev.ne.13.030190.000325
  • Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98, 676–682. doi:10.1073/pnas.98.2.676
  • Reverberi, C., Gorgen, K., & Haynes, J.-D. (2012). Compositionality of rule representations in human prefrontal cortex. Cerebral Cortex, 22, 1237–1246. doi:10.1093/cercor/bhr200
  • Rubinstein, J. S., Meyer, D. E., & Evans, J. E. (2001). Executive control of cognitive processes in task switching. Journal of Experimental Psychology: Human Perception and Performance, 27, 763–797. doi:10.1037/0096-1523.27.4.763
  • Saalmann, Y. B., Pinsk, M. A., Wang, L., Li, X., & Kastner, S. (2012). The pulvinar regulates information transmission between cortical areas based on attention demands. Science, 337, 753–756. doi:10.1126/science.1223082
  • Sakai, K. (2008). Task set and prefrontal cortex. Annual Review of Neuroscience, 31, 219–245. doi:10.1146/annurev.neuro.31.060407.125642
  • Sakai, K., & Passingham, R. E. (2006). Prefrontal set activity predicts rule-specific neural processing during subsequent cognitive performance. Journal of Neuroscience, 26, 1211–1218. doi:10.1523/JNEUROSCI.3887-05.2006
  • Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The expected value of control: An integrative theory of anterior cingulate cortex function. Neuron, 79, 217–240. doi:10.1016/j.neuron.2013.07.007
  • Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662. doi:10.1037/h0054651
  • Voytek, B., Kayser, A., Badre, D., Fegen, D., Chang, E. F., Crone, N. E., … D’Esposito, M. (2015). Oscillatory dynamics coordinating human frontal networks in support of goal maintenance. Nature Neuroscience, 18, 1318–1324. doi:10.1038/nn.4071
  • Wisniewski, D., Reverberi, C., Momennejad, I., Kahnt, T., & Haynes, J. D. (2015). The role of the parietal cortex in the representation of task–reward associations. Journal of Cognitive Neuroscience, 35, 12355–12365. doi:10.1523/JNEUROSCI.4882-14.2015
  • Woolgar, A., Jackson, J., & Duncan, J. (2016). Coding of visual, auditory, rule, and response information in the brain: 10 years of multivoxel pattern analysis. Journal of Cognitive Neuroscience, 28, 1433–1454. doi:10.1162/jocn_a_00981

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.