Publication Cover
Statistics
A Journal of Theoretical and Applied Statistics
Volume 58, 2024 - Issue 2
39
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A data-driven test approach to identify COVID-19 surge phases: an alert-warning tool

&
Pages 422-436 | Received 11 Oct 2023, Accepted 18 Mar 2024, Published online: 02 Apr 2024

References

  • IMF. Exceptional times, exceptional action. In: Opening remarks for spring meetings press conference; 2020. https://www.imf.org/en/News/Articles/2020/04/15/sp041520-exceptional-times-exceptional-action
  • Bitetto A, Cerchiello P, Mertzanis C. A data-driven approach to measuring epidemiological susceptibility risk around the world. Sci Rep. 2021;11:Article ID 24037. doi: 10.1038/s41598-021-03322-8
  • Polonsky JA, Baidjoe A, Kamvar ZN, et al. Outbreak analytics: a developing data science for informing the response to emerging pathogens. Philos Trans R Soc B. 2019;374(1776):Article ID 20180276. doi: 10.1098/rstb.2018.0276
  • Rivers C, Chretien JP, Riley S, et al. Using ‘outbreak science’ to strengthen the use of models during epidemics. Nat Commun. 2019;10(1):3102. doi: 10.1038/s41467-019-11067-2
  • Nikolopoulos K, Punia S, Schäfers A, et al. Forecasting and planning during a pandemic: COVID-19 growth rates, supply chain disruptions, and governmental decisions. Eur J Oper Res. 2021;290(1):99–115. doi: 10.1016/j.ejor.2020.08.001
  • Shinde GR, Kalamkar AB, Mahalle PN, et al. Forecasting models for coronavirus disease (COVID-19): a survey of the state-of-the-art. SN Comput Sci. 2020;1:1–15. doi: 10.1007/s42979-020-00209-9
  • Arik S, Li CL, Yoon J, et al. Interpretable sequence learning for COVID-19 forecasting. Adv Neural Inf Process Syst. 2020;33:18807–18818.
  • Harko T, Lobo FS, Mak M. Exact analytical solutions of the susceptible-infected-recovered (SIR) epidemic model and of the SIR model with equal death and birth rates. Appl Math Comput. 2014;236:184–194. https://www.sciencedirect.com/science/article/pii/S009630031400383X. doi: 10.1016/j.amc.2014.03.030
  • Kröger M, Schlickeiser R. Analytical solution of the sir-model for the temporal evolution of epidemics. part a: time-independent reproduction factor. J Phys A: Math Theor. 2020;53(50):505601. doi: 10.1088/1751-8121/abc65d
  • Zelenkov Y, Reshettsov I. Analysis of the COVID-19 pandemic using a compartmental model with time-varying parameters fitted by a genetic algorithm. Expert Syst Appl. 2023;224:120034. doi: 10.1016/j.eswa.2023.120034
  • Agosto A, Campmas A, Giudici P, et al. Monitoring COVID-19 contagion growth. Stat Med. 2021;40(18):4150–4160. doi: 10.1002/sim.v40.18
  • Giudici P, Tarantino B, Roy A. Bayesian time-varying autoregressive models of COVID-19 epidemics. Biom J. 2023;65(1):2200054. doi: 10.1002/bimj.v65.1
  • Chauhan J, Bedi J. EffViT-COVID: a dual-path network for COVID-19 percentage estimation. Expert Syst Appl. 2023;213:118939. doi: 10.1016/j.eswa.2022.118939
  • Gao J, Sharma R, Qian C, et al. STAN: spatio-temporal attention network for pandemic prediction using real-world evidence. J Am Med Inform Assoc. 2021;28(4):733–743. doi: 10.1093/jamia/ocaa322
  • Jin X, Wang YX, Yan X. Inter-series attention model for COVID-19 forecasting. In: Proceedings of the 2021 SIAM international conference on data mining (SDM). Society for Industrial and Applied Mathematics; 2021. p. 495–503.
  • Rodriguez A, Tabassum A, Cui J, et al. Deepcovid: an operational deep learning-driven framework for explainable real-time covid-19 forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence Vol. 35.2021. p. 15393–15400.
  • Utku A. Deep learning based hybrid prediction model for predicting the spread of COVID-19 in the world's most populous countries. Expert Syst Appl. 2023;231:120769. doi: 10.1016/j.eswa.2023.120769
  • Cramer EY, Huang Y, Wang Y, et al. The united states covid-19 forecast hub dataset. Sci Data. 2022;9(1):462. doi: 10.1038/s41597-022-01517-w
  • Ayala A, Villalobos Dintrans P, Elorrieta F, et al. Identification of COVID-19 waves: considerations for research and policy. Int J Environ Res Public Health. 2021;18(21):11058. doi: 10.3390/ijerph182111058
  • Zhang SX, Arroyo Marioli F, Gao R, et al. A second wave? what do people mean by COVID waves?–a working definition of epidemic waves. Risk Manag Healthc Policy. 2021;14:3775–3782. doi: 10.2147/RMHP.S326051
  • Salyer SJ, Maeda J, Sembuche S, et al. The first and second waves of the COVID-19 pandemic in Africa: a cross-sectional study. The Lancet. 2021;397(10281):1265–1275. doi: 10.1016/S0140-6736(21)00632-2
  • Soriano V, Ganado-Pinilla P, Sanchez-Santos M, et al. Main differences between the first and second waves of COVID-19 in Madrid, Spain. Int J Infect Dis. 2021;105:374–376. doi: 10.1016/j.ijid.2021.02.115
  • Shi Z, Zhang H, Zhang R, et al. Stochastic dynamics of the COVID-19 case-fatality ratios in indonesia, malaysia, and the philippines: economic implications for the post-COVID-19 era. Front Public Health. 2021;9:755047.
  • Biggerstaff M, Cauchemez S, Reed C, et al. Estimates of the reproduction number for seasonal, pandemic, and zoonotic influenza: a systematic review of the literature. BMC Infect Dis. 2014;14(1):1–20. doi: 10.1186/1471-2334-14-480
  • Giordano G, Blanchini F, Bruno R, et al. Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. Nat Med. 2020;26(6):855–860. doi: 10.1038/s41591-020-0883-7
  • Gu C, Jiang W, Zhao T, et al. Mathematical recommendations to fight against COVID-19; 2020. Available at SSRN 3551006.
  • Li M, Chen P, Yuan Q, et al. Transmission characteristics of the COVID-19 outbreak in China: a study driven by data; 2020. MedRxiv 2020–02.
  • Linton NM, Kobayashi T, Yang Y, et al. Incubation period and other epidemiological characteristics of 2019 novel coronavirus infections with right truncation: a statistical analysis of publicly available case data. J Clin Med. 2020;9(2):538. doi: 10.3390/jcm9020538
  • Phillips PC, Shi S, Yu J. Testing for multiple bubbles: historical episodes of exuberance and collapse in the S&P 500. Int Econ Rev. 2015;56(4):1043–1078. doi: 10.1111/iere.2015.56.issue-4
  • Agosto A, Cerchiello P, Pagnottoni P. Sentiment, Google queries and explosivity in the cryptocurrency market. Phys A: Stat Mech Appl. 2022;605:128016. doi: 10.1016/j.physa.2022.128016
  • Corbet S, Lucey B, Yarovaya L. Datestamping the Bitcoin and Ethereum bubbles. Fin Res Lett. 2018;26:81–88. doi: 10.1016/j.frl.2017.12.006
  • Fry J, Cheah ET. Negative bubbles and shocks in cryptocurrency markets. Int Rev Financ Anal. 2016;47:343–352. doi: 10.1016/j.irfa.2016.02.008
  • Dickey DA, Fuller WA. Distribution of the estimators for autoregressive time series with a unit root. J Am Stat Assoc. 1979;74(366a):427–431. doi: 10.1080/01621459.1979.10482531
  • Astill S, Taylor AR, Kellard N, et al. Using covariates to improve the efficacy of univariate bubble detection methods. J Empir Finance. 2023;70:342–366. doi: 10.1016/j.jempfin.2022.12.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.