Publication Cover
Optimization
A Journal of Mathematical Programming and Operations Research
Volume 65, 2016 - Issue 7
335
Views
15
CrossRef citations to date
0
Altmetric
Articles

Convexity and optimization with copulæ structured probabilistic constraints

&
Pages 1349-1376 | Received 27 Aug 2014, Accepted 12 Apr 2016, Published online: 03 May 2016

References

  • Prékopa A. Stochastic programming. Dordrecht: Kluwer; 1995.
  • Henrion R, Möller A. Optimization of a continuous distillation process under random inflow rate. Comput. Math. Appl. 2003;45:247–262.
  • Morgan DR, Eheart JW, Valocchi AJ. Aquifer remediation design under uncertainty using a new chance constraint programming technique. Water Resour. Res. 1993;29:551–561.
  • van Ackooij W, Henrion R, Möller A, et al. Joint chance constrained programming for hydro reservoir management. Optim. Eng. 2014;15:509–531.
  • van Ackooij W. Decomposition approaches for block-structured chance-constrained programs with application to hydro-thermal unit commitment. Math. Methods Oper. Res. 2014;80:227–253.
  • Dentcheva D. Optimisation models with probabilistic constraints. Shapiro A, Dentcheva D, Ruszczyński A, editors. Lectures on stochastic programming. Modeling and theory. MPS-SIAM series on optimization. Vol. 9, Philadelphia: SIAM and MPS; 2009. p. 87–154.
  • Arnold T, Henrion R, Möller A, et al. A mixed-integer stochastic nonlinear optimization problem with joint probabilistic constraints. Pacific J. Optim. 2014;10:5–20.
  • Luedtke J, Ahmed S, Nemhauser GL. An integer programming approach for linear programs with probabilistic constraints. Math. Program. 2010;122:247–272.
  • Sklar A. Fonctions de répartition à dimensions et leurs marges. Publications and l’Institut de Statistique de Paris. 1959;8:229–231.
  • Henrion R, Strugarek C. Convexity of chance constraints with independent random variables. Comput. Optim. Appl. 2008;41:263–276.
  • Henrion R, Strugarek C. Convexity of chance constraints with dependent random variables: the use of copulae. Bertocchi M, Consigli G, Dempster AH, editors. Stochastic optimization methods in finance and energy: new financial products and energy market strategies. International series in operations research and management science. New York: Springer-Verlag; 2011. p. 427–439.
  • van Ackooij W. Eventual convexity of chance constrained feasible sets. Optimization (J. Math. Program. Oper. Res.) 2015;64:1263–1284.
  • Veinott AF. The supporting hyperplane method for unimodal programming. Oper. Res. 1967;15:147–152.
  • Cheng J, Houda M, Lisser A. Second-order cone programming approach for elliptically distributed joint probabilistic constraints with dependent rows. Technical report, Optimization; 2014. Available from: http://www.optimization-online.org/DB_HTML/2014/05/4363.html.
  • van Ackooij W. Chance constrained programming: with applications in energy management [PhD thesis]. Chatenay-Malabry: École Centrale Paris; December 2013.
  • Sklar A. Random variables, joint distribution functions, and copulas. Kybernetika. 1973;9:449–460.
  • Houda M, Lisser A. On the use of copulas in joint chance-constrained programming. Proceedings of the 3rd international conference on operations research and enterprise systems. 2014. p. 72–79.
  • Zadeh ZM, Khorram E. Convexity of chance constrained programming problems with respect to a new generalized concavity notion. Ann. Oper. Res. 2012;196:651–662.
  • Tamm E. On g-concave functions and probability measures (Russian). Eesti NSV Teaduste Akademia Toimetised, Füüsika-Matemaatika. 1977;28:17–24.
  • Benders JF. Partitioning procedures for solving mixed-variables programming problems. Numer. Math. 1962;4:238–252.
  • van Slyke RM, Wets RJ-B. L-shaped linear programs with applications to optimal control and stochastic programming. SIAM J. Appl. Math. 1969;17:638–663.
  • Geoffrion AM. Generalized benders decomposition. J. Optim. Theory Appl. 1972;10:237–260.
  • Floudas CA. Generalized benders decomposition. Floudas CA, Pardalos PM, editors. Encyclopedia of optimization. 2nd ed. Springer-Verlag; 2009. p. 1163–1174.
  • Costa AM. A survey on benders decomposition applied to fixed-charge network design problems. Comput. Oper. Res. 2005;32:1429–1450.
  • Kelley JE. The cutting-plane method for solving convex programs. J. Soc. Ind. Appl. Math. 1960;8:703–712.
  • Zakeri G, Philpott A, Ryan DM. Inexact cuts in benders decomposition. SIAM J. Optim. 2000;10:643–657.
  • de Oliveira W, Sagastizábal C, Lemaréchal C. Convex proximal bundle methods in depth: a unified analysis for inexact oracles. Math. Prog. Ser. B. 2014;148:241–277.
  • Kolokolov A, Kosarev N. Analysis of decomposition algorithms with benders cuts for p-median problem. J. Math. Model. Algorithms. 2006;5:189–199.
  • Sherali HD, Lunday BJ. On generating maximal nondominated benders cuts. Ann. Oper. Res. 2013;210:57–72.
  • Sahiridis GKD, Minoux M, Ierapetritou MG. Accelerating benders method using covering cut bundle generation. Int. Trans. Oper. Res. 2010;17:221–237.
  • Wentges P. Accelerating benders’ decomposition for the capacitated facility location problem. Math. Methods Oper. Res. 1996;44:267–290.
  • Van Dinter J, Rebenack S, Kallrath J, et al. The unit commitment model with concave emissions costs: a hybrid benders’ decomposition with nonconvex master problems. Ann. Oper. Res. 2013;210:361–386.
  • Yang Y, Lee JM. A tighter cut generation strategy for acceleration of benders decomposition. Comput. Chem. Eng. 2012;44:84–93.
  • Codato G, Fischetti M. Combinatorial benders’ cuts for mixed-integer linear programming. Oper. Res. 2006;54:756–766.
  • Caroe CC, Tind J. L-shaped decomposition of two-stage stochastic programs with integer recourse. Math. Program. 1998;83:451–464.
  • Hooker JN, Ottosson G. Logic-based benders decomposition. Math. Program. 2003;96:33–60.
  • Sahiridis GKD, Ierapetritou MG, Floudas CA. Benders decomposition and its application in engineering. Vol. 210. Annals of operations research: Springer; 2013.
  • Üster H, Easwaran G, Akçali E, et al. Benders decomposition with alternative multiple cuts for a multi-product closed-loop supply chain network design model. Naval Res. Logistics. 2007;54:890–907.
  • Osman H, Demirli K. A bilinear goal programming model and a modified benders decomposition algorithm for supply chain reconfiguration and supplier selection. Int. J. Prod. Econ. 2010;124:97–105.
  • Ghotboddini MM, Rabbani M, Rahimian H. A comprehensive dynamic cell formation design: Benders’ decomposition approach. Expert Sys. Appl. 2011;38:2478–2488.
  • Montemanni R, Gambardella LM. The robust shortest path problem with interval data via benders decomposition. 4OR. 2005;3:315–328.
  • Fakhri A, Ghatee M. Solution of preemptive multi-objective network design problems applying benders decomposition method. Ann. Oper. Res. 2013;210:295–307.
  • Mahey P, Benchakroun A, Boyer F. Capacity and flow assignment of data networks by generalized benders decomposition. J. Global Optim. 2001;20:173–193.
  • Castillo E, Mínguez R, Conejo AJ, et al. Estimating the parameters of a fatigue model using benders’ decomposition. Ann. Oper. Res. 2013;210:309–331.
  • Rebenack S. Combining sampling-based and scenario-based nested benders decomposition methods: application to stochastic dual dynamic programming. Math. Program. Forthcoming 2015;1–47.
  • Munõz E, Stolpe M. Generalized benders decomposition for topology optimization problems. J. Global Optim. 2011;51:149–183.
  • Zappe CJ, Cabot AV. The application of generalized benders decomposition to certain nonconcave programs. Comput. Math. Appl. 1991;21:181–190.
  • Lemaréchal C, Nemirovskii A, Nesterov Y. New variants of bundle methods. Math. Program. 1995;69:111–147.
  • van Ackooij W, de Oliveira W. Level bundle methods for constrained convex optimization with various oracles. Comput. Optim. Appl. 2014;57:555–597.
  • de Oliveira W, Sagastizábal C. Bundle methods in the xxi century: a birds’-eye view. Pesquisa Operaciona. 2014;34:647–670.
  • Xu H. Level function method for quasiconvex programming. J. Optim. Theory Appl. 2001;108:407–437.
  • Mayer J. On the numerical solution of jointly chance constrained problems. Uryas’ev S, editor. Probabilistic constrained optimization: methodology and applications. Kluwer Academic Publishers; 2000. pp. 220–235
  • van Ackooij W, Sagastizábal C. Constrained bundle methods for upper inexact oracles with application to joint chance constrained energy problems. SIAM J. Optim. 2014;24:733–765.
  • Magnanti TL, Wong RT. Accelerating benders decomposition: algorithmic enhancement and model selection criteria. Oper. Res. 1981;29:464–484.
  • Wachter A, Biegler LT. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 2006;106:25–57.
  • Trivedi PK, Zimmer DM. Copula modeling: an introduction for practitioners. Found. Trends Econometrics. 2007;1:1–111.
  • Nelsen RB. An introduction to copulas. 2nd ed. Springer series in statistics. New York: Springer-Verlag; 2006.
  • McNeil A, Nešlehová J. Multivariate archimedian copulas, d-monotone functions and l1 norm symmetric distributions. Ann. Statistics. 2009;37:3059–3097.
  • Oudjane N. Utilisation des copules pour la gestion du risque. Technical Report HI-23/2002/006, Clamart: EDF R &D; 2002.
  • Henrion R, Römisch W. Metric regularity and quantitative stability in stochastic programs with probabilistic constraints. Math. Program. 1999;84:55–88.
  • Ruszczyński A. Nonlinear optimization. Princeton University Press: Princeton; 2006.
  • Hiriart-Urruty JB, Lemaréchal C. Convex analysis and minimization algorithms I. Vol. 305, 2nd ed. Grundlehren der mathematischen Wissenschaften. Berlin Heidelberg: Springer-Verlag; 1996.
  • Ben Amor H, Desrosiers J, Frangioni A. On the choice of explicit stabilizing terms in column generation. Discrete Appl. Math. 2009;157:1167–1184.
  • Frangioni A, Gendron B. A stabilized structured dantzig-wolfe decomposition method. Math. Program. B. 2013;104:45–76.
  • Frangioni A, Gorgone E. Generalized bundle methods for sum-functions with "easy" components: applications to multicommodity network design. Math. Program. 2014;145:133–161.
  • Currie J, Wilson DI. OPTI: Lowering the Barrier Between Open Source Optimizers and the Industrial MATLAB User. In: Sahinidis N, Pinto J, editors. Foundations of computer-aided process operations. Savannah: Elsevier; 2012. p. 8–11.
  • Dolan ED, Moré JJ. Benchmarking optimization software with performance profiles. Math. Program. 2002;91:201–213.
  • Genz A, Bretz F. Computation of multivariate normal and t probabilities. Vol. 195, Lecture Notes in Statistics. Dordrecht: Springer; 2009.
  • van Ackooij W, Henrion R, Möller A, et al. On probabilistic constraints induced by rectangular sets and multivariate normal distributions. Math. Methods Oper. Res. 2010;71:535–549.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.