Publication Cover
Optimization
A Journal of Mathematical Programming and Operations Research
Volume 66, 2017 - Issue 5
147
Views
2
CrossRef citations to date
0
Altmetric
Articles

LP relaxations for a class of linear semi-infinite programming problems

&
Pages 657-673 | Received 11 May 2016, Accepted 29 Jan 2017, Published online: 24 Feb 2017

References

  • Pardalos PM, Vavasis SA. Quadratic programming with one negative eigenvalue is NP-hard. J Global Optim. 1991;1(1):15–22.
  • Goberna MA. Linear semi-infinite optimization: recent advances. In: Jeyakumar V, Rubinov A, editors. Continuous optimization. New York (NY): Springer; 2005. p. 3–22. (Applied optimization; vol. 99).
  • Goberna MA, López MA. A comprehensive survey of linear semi-infinite optimization theory. In: Reemtsen R, Rückmann J-J, editors. Semi-infinite programming. Dordrecht: Kluwer Academic Publishers; 1998. p. 3–27. (Nonconvex optimization and its applications; vol. 25).
  • Goberna MA, López MA. Linear semi-infinite optimization. Chichester: John Wiley & Sons; 1998.
  • Hettich R, Kortanek KO. Semi-infinite programming: theory, methods, and applications. SIAM Rev. 1993;35(3):380–429.
  • López M, Still G. Semi-infinite programming. Eur J Oper Res. 2007;180(2):491–518.
  • Reemtsen R, Görner S. Numerical methods for semi-infinite programming: a survey. In: Reemtsen R, Rückmann J-J, editors. Semi-infinite programming. Dordrecht: Kluwer Academic Publishers; 1998. p. 195–275. (Nonconvex optimization and its applications; vol. 25).
  • Shapiro A. Semi-infinite programming, duality, discretization and optimality conditions. Optimization. 2009;58(2):133–161.
  • Parpas P, Rustem B. An algorithm for the global optimization of a class of continuous minimax problems. J Optim Theory Appl. 2009;141(2):461–473.
  • Lasserre JB. An algorithm for semi-infinite polynomial optimization. TOP. 2012;20(1):119–129.
  • Wang L, Guo F. Semidefinite relaxations for semi-infinite polynomial programming. Comput Optim Appl. 2013;58(1):133–159.
  • Xu Y, Sun W, Qi L. On solving a class of linear semi-infinite programming by SDP method. Optimization. 2015;64(3):603–616.
  • Lasserre JB. Moments, positive polynomials and their applications. London: Imperial College Press; 2009.
  • Laurent M. Sums of squares, moment matrices and optimization over polynomials. In: Putinar M, Sullivant S. editors. Emerging applications of algebraic geometry. New York (NY): Springer; 2009. p. 157–270. (The IMA volumes in mathematics and its applications; vol. 149).
  • Marshall M. Positive polynomials and sums of squares. Providence (RI): American Mathematical Society; 2008. (Mathematical surveys and monographs; vol. 146).
  • Parrilo PA, Sturmfels B. Minimizing polynomial functions. In: Basu S, Gonzalez-Vega L. editors. Algorithmic and quantitative real algebraic geometry. Providence (RI)American Mathematical Society; 2003. p. 83–99. (DIMACS series in discrete mathematics and theoretical computer science; vol. 60).
  • Guo F. Semidefinite programming relaxations for linear semi-infinite polynomial programming. Available from: http://arxiv.org/abs/1509.06394,2015
  • Putinar M. Positive polynomials on compact semi-algebraic sets. Indiana Univ Math J. 1993;42(3):969–984.
  • Lasserre JB. Semidefinite programming vs. LP relaxations for polynomial programming. Math Oper Res. 2002;27(2):347–360.
  • Lasserre JB. Polynomial programming: LP-relaxations also converge. SIAM J Optim. 2005;15(2):383–393.
  • Sherali HD, Adams WP. A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J Discrete Math. 1990;3(3):411–430.
  • Cassier G. Problèm des moments sur un compact de ℝ et décomposition de polynômes a plusieurs variables. J Funct Anal. 1984;58(3):254–266.
  • Handelman D. Representing polynomials by positive linear functions on compact convex polyhedra. Pac J Math. 1988;132(1):35–62.
  • Lasserre JB. A new look at nonnegativity on closed sets and polynomial optimization. SIAM J Optim. 2011;21(3):864–885.
  • Haviland EK. On the momentum problem for distribution functions in more than one dimension. Am J Math. 1935;57(3):562–568.
  • Baldoni V, Berline N, De Loera JA, et al. A User’s Guide for LattE integrale v1.7.2, 2013, software package LattE. Available from: http://www.math.ucdavis.edu/latte/
  • Grimm D, Netzer T, Schweighofer M. A note on the representation of positive polynomials with structured sparsity. Archiv der Mathematik. 2007;89(5):399–403.
  • Lasserre JB. Convergent SDP-relaxations in polynomial optimization with sparsity. SIAM J Optim. 2006;17(3):822–843.
  • Waki H, Kim S, Kojima M, et al. Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity. SIAM J Optim. 2006;17(1):218–242.
  • Schrijver A. Theory of linear and integer programming. England: Wiley; 1998.
  • Guo F, Wang L, Zhou G. Minimizing rational functions by exact Jacobian SDP relaxation applicable to finite singularities. J Global Optim. 2014;58:261–284.
  • Bertsekas DP. Convex optimization theory. Belmont (MA): Athena Scientific; 2009.
  • Charnes A, Cooper WW, Kortanek K. Duality in semi-infinite programs and some works of Haar and Carathéodory. Manage Sci. 1963;9(2):209–228.
  • Rogosinski WW. Moments of non-negative mass. Proc Roy Soc London Ser A, Math Phys Sci. 1958;245(1240):1–27.
  • Cánovas MJ, López MA, Parra J, et al. Distance to ill-posedness and the consistency value of linear semi-infinite inequality systems. Math Program. 2005;103(1):95–126.
  • Cánovas MJ, López MA, Parra J, et al. Distance to ill-posedness in linear optimization via the fenchel-legendre conjugate. J Optim Theory Appl. 2006;130(2):173–183.
  • Cánovas MJ, López MA, Parra J, et al. Distance to solvability/unsolvability in linear optimization. SIAM J Optim. 2006;16(3):629–649.
  • Cánovas MJ, López MA, Parra J, et al. Ill-posedness with respect to the solvability in linear optimization. Linear Algebra Appl. 2006;416(2):520–540.
  • Cánovas MJ, López MA, Parra J, et al. Distance to ill-posedness for linear inequality systems under block perturbations: convex and infinite-dimensional cases. Optimization. 2011;60(7):925–946.
  • OPTimization Interface (OPTI) Toolbox. Available from: http://www.i2c2.aut.ac.nz/Wiki/OPTI/index.php/Main/HomePage
  • CLP solver. Available from: https://projects.coin-or.org/Clp
  • Ferris MC, Philpott AB. An interior point algorithm for semi-infinite linear programming. Math Program. 1989;43(1):257–276.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.