Publication Cover
Optimization
A Journal of Mathematical Programming and Operations Research
Volume 70, 2021 - Issue 9
236
Views
1
CrossRef citations to date
0
Altmetric
Articles

New nonasymptotic convergence rates of stochastic proximal point algorithm for stochastic convex optimization

Pages 1891-1919 | Received 07 Aug 2019, Accepted 18 Apr 2020, Published online: 24 May 2020

References

  • Choi H, Baraniuk RG. Multiple wavelet basis image denoising using Besov ball projections. IEEE Signal Process Lett. 2004;11:717–720.
  • Herman GT. Fundamentals of computerized tomography: image reconstruction from projections. New York: Springer; 2009.
  • Herman GT, Chen W. A fast algorithm for solving a linear feasibility problem with application to intensity-modulated radiation therapy. Linear Algebra Appl. 2008;428:1207–1217.
  • Censor Y, Chen W, Combettes PL, et al. On the effectiveness of projection methods for convex feasibility problems with linear inequality constraints. Comput Optim Appl. 2012;51(3):1065–1088.
  • Gubin LG, Polyak BT, Raik EV. The method of projections for finding the common points of convex sets. USSR Comp Math Phys. 1967;7:1–24.
  • Nedic A. Random projection algorithms for convex set intersection problems. 49th IEEE Conference on Decision and Control (CDC), 7655–7660, 2010.
  • Necoara I, Richtarik P, Patrascu A. Stochastic projection methods for convex feasibility problems: conditioning and convergence rates. submitted, arXiv:1801.04873, 2018.
  • Patrascu A, Necoara I. Nonasymptotic convergence of stochastic proximal point methods for constrained convex optimization. J Mach Learn Res. 2018;19:1–42.
  • Ryu E, Boyd S. Stochastic proximal iteration: a non-asymptotic improvement upon stochastic gradient descent. 2016. Available from: http://web.stanford.edu/eryu/.
  • Toulis P, Tran D, Airoldi EM. Towards stability and optimality in stochastic gradient descent. Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, PMLR Vol. 51. p. 1290–1298, 2016.
  • Bianchi P. Ergodic convergence of a stochastic proximal point algorithm. SIAM J Optim. 2016;26(4):2235–2260.
  • Hazan E, Kale S. Beyond the regret minimization barrier: optimal algorithms for stochastic strongly-convex optimization. J Mach Learn Res. 2014;15:2489-–2512.
  • Moulines E, Bach FR. Non-asymptotic analysis of stochastic approximation algorithms for machine learning. Adv Neural Inf Process Sys (NIPS). 2011;24:451–459.
  • Nemirovski A, Juditsky A, Lan G, et al. Robust stochastic approximation approach to stochastic programming. SIAM J Optim. 2009;19(4):1574–1609.
  • Nguyen L, NGUYEN PH, Dijk M, et al. SGD and Hogwild! convergence without the bounded gradients assumption. Proceedings of the 35th International Conference on Machine Learning, PMLR; Vol. 80. p. 3750–3758, 2018.
  • Rakhlin A, Shamir O, Sridharan K. Making gradient descent optimal for strongly convex stochastic optimization. Proceedings of the 29th International Conference on International Conference on Machine Learning. p. 1571–1578, 2012.
  • Ramdas A, Singh A. Optimal rates for stochastic convex optimization under Tsybakov noise condition. Proc 30th Inter Conf Mach Learn. 2013;28(1):365–373.
  • Rosasco L, Villa S, Vu BC. Convergence of stochastic proximal gradient algorithm. Arxiv, 2014. Available from: https://arxiv.org/abs/1403.5074.
  • Shalev-Shwartz S, Singer Y, Srebro N, et al. Pegasos: primal estimated sub-gradient solver for SVM. Math Program. 2011;127(1):3–30.
  • Yang T, Lin Q. RSG: beating subgradient method without smoothness and strong convexity. J Mach Learn Res. 2018;19:1-–33.
  • Xu Y, Lin Q, Yang T. Stochastic convex optimization: faster local growth implies faster global convergence. International Conference on Machine Learning (ICML), 2017.
  • Koshal J, Nedic and U. V. Shanbhag A. Regularized iterative stochastic approximation methods for stochastic variational inequality problems. IEEE Trans Automat Contr. 2013;58(3):594–609.
  • Wang M, Bertsekas DP. Stochastic first-order methods with random constraint projection. SIAM J Optim. 2016;26(1):681–717.
  • Asi H, Duchi JC. Stochastic (Approximate) proximal point methods: convergence, optimality, and adaptivity. Arxiv, 2018.
  • Rockafellar RT, Wets RJ-B. On the interchange of subdifferentiation and conditional expectation for convex functionals. Stochastics. 1982;7:173–182.
  • Rockafellar RT. Convex analysis. Princeton (NJ): Princeton University Press; 1998.
  • Bauschke HH, Borwein J, Li W. Strong conical hull intersection property, bounded linear regularity, Jameson's property (G), and error bounds in convex optimization. Math Program Ser A. 1999;86:135–160.
  • Salim A, Bianchi P, Hachem W. Snake: a stochastic proximal gradient algorithm for regularized problems over large graphs. IEEE Trans Automat Contr. 2019;64(5):1832–1847.
  • Rockafellar RT, Wets RJ-B. Variational analysis. Berlin Heidelberg: Springer-Verlag; 1998.
  • Necoara I, Nesterov Yu., Glineur F. Linear convergence of first order methods for non-strongly convex optimization. Math Program. 2018. Available form: https://doi.org/10.1007/s10107-018-1232-1.
  • Stoican F, Irofti P. Aiding dictionary learning through multi-parametric sparse representation. Algorithms. 2019;12(7):131.
  • Bach F, Lanckriet G, Jordan M. Multiple kernel learning, conic duality, and the SMO algorithm. International Conference on Machine Learning (ICML), 2004.
  • Drusvyatskiy D, Lewis AS. Error bounds, quadratic growth, and linear convergence of proximal methods. Math Oper Res. 2018;43(3):919–948.
  • Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imag Sci. 2009;2(1):183–202.
  • Ma S, Bassily R, Belkin M. The power of interpolation: understanding the effectiveness of SGD in modern over-parametrized learning. arXiv:1712.06559, 2018.
  • Bianchi P, Hachem W. Dynamical behavior of a stochastic forward-backward algorithm using random monotone operators. J Optim Theory Appl. 2016;171(1):90–120.
  • Hallac D, Leskovec J, Boyd S. Network lasso: clustering and optimization in large graphs. Proceedings SIGKDD, p. 387–396, 2015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.